首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical pretreatment, microfiltration (MF) and ultrafiltration (UF) were applied to produce delipidized whey protein concentrates (WPC). Processes including both chemical pretreatment and MF resulted in WPC with <0.5% lipids. Low-pH UF and isoelectric point (PI) precipitation were more effective for lipid removal than chemical pretreatment by thermocalcic aggregation. Protein permeation ratios in MF processes were improved by UF preconcentration of whey. Protein permeation and flux were different between the two MF membranes used. Isoelectric point precipitation increased β-Lg contents, but not α-La, in the resulting WPC (B). Minor proteins exhibited lower concentrations in WPC B and MF WPC products.  相似文献   

2.
The effect of pretreatment upon the composition and physicochemical and functional properties of whey, ultrafiltration (UF) retentate and freeze-dried and spray-dried whey protein concentrates (WPC) was investigated. Pretreatment was by cooling cheese whey to 0-5°C, adding calcium chloride, adjusting to pH 7.3, warming to 50°C, and removing the insoluble precipitate that formed by centrifugation or decantation. UF permeation flux rate of pretreated whey was about double that for control whey. Pretreated whey was essentially turbidity free, contained 85% less milkfat, 37% more calcium and 40% less phosphorus than whey. Pretreated whey WPC proteins were slightly more soluble at pH 3, but less functional for emulsification than whey WPC proteins. Neither whey WPC proteins nor pretreated whey WPC proteins was functional for foaming at 6% protein concentration.  相似文献   

3.
Microencapsulating Properties of Whey Protein Concentrate 75   总被引:3,自引:0,他引:3  
ABSTRACT Emulsions containing various levels of soya oil dispersed in solutions of whey protein concentrate (WPC) 75 (5% w/v) were spray-dried to yield powders with oil contents ranging from 20% to 75% (w/w). The effect of homogenizing pressure and oil/protein ratio on oil globule size distributions and protein load of the emulsions and the microencapsulation efficiency (ME) and redispersion behavior of the powders were examined. Emulsion oil droplet size decreased with increasing homogenization pressure but was not affected by oil/protein ratio. Emulsion protein load and ME of the powders were negatively correlated with increasing oil/protein ratio. Powders with an oil/protein ratio < 0.75 were least susceptible to destabilization during spray-drying.  相似文献   

4.
Ion exchange whey protein concentrate (IEWPC) was produced from acid whey using Spherosil-S, a microporous silica bead cation exchange medium. About 80% of the total whey proteins were recovered by the ion exchange process. The composition of IEWPC was 63 - 66% protein, 1 - 2% lactose, 7 - 9% milkfat and 20 - 22% ash. Solubility, PAGE, reverse phase HPLC and Sephadex gel frltration results confirmed that the proteins in IEWPC had undergone substantial denaturation during their isolation. Several major problems encountered during the study were: generation of large volumes of column effluent, the need for concentration of column protein elutate fractions by ultrafiltration, column fouling and loss of protein solubility and functionality.  相似文献   

5.
Four lactating Holstein cows were fed isonitrogenous rations of urea-corn silage and a 15% crude protein pelleted grain ration containing whey protein concentrate (34% protein) either untreated or treated with 1% formaldehyde on a protein basis. The trial design was three periods double reversal with 12 days per period during which milk and digestibility were measured the last 4 days of each period. Apparent nitrogen digestibility (%), productive nitrogen retained (milk plus retained, g/day), and dry matter digestibility were 60.0 and 53.9, 89.0 and 103.8, and 67.4 and 63.2 for cows fed untreated and treated rations. Productive nitrogen as a percent of absorbed was greater for cows fed the formaldehyde treated ration, suggesting more efficient utilization of absorbed nitrogen. Milk production, milk fat percent and yield, and 4% fat-corrected milk were greater for cows fed the treated ration. Milk fatty acid content was similar. Total daily milk nitrogen, true protein nitrogen, and casein nitrogen yields were not significantly higher for the treated ration. No differences in serum urea and rumen ammonia were major. Rumen volatile fatty acids were higher in cows fed the untreated rations at 4 and 6 h postfeeding. Differences in serum concentrations of most individual essential amino acids between tail and mammary blood were greater for cows fed the treated ration.  相似文献   

6.
The Spherosil-QMA ion exchange process was used to prepare whey protein concentrate (WPC) from cheese whey. The process recovered about 64% of the proteins from whey as a 63% protein WPC. The WPC contained about 20.8% lactose, glucose, and galactose. The WPC proteins ranged in solubility from about 32–42% as a function of pH 3–7 and appeared to have undergone substantial denaturation by HPLC but not by palyacrylamide gel electrophoresis. The gelation properties of WPC were compared with those of commercial and ultrafiltration WPCs as a function of pH 3–7.5 and 0.0–0.15M NaCl and CaCl2. The WPC did not function well as egg replacer in model cake and custard formulations.  相似文献   

7.
在小麦粉中添加不同比例的乳清浓缩蛋白(Whey protein concentrate,WPC),并分析其对面条品质及黏性的影响,以达到增加营养价值及改善面条品质的作用。实验结果表明:WPC的添加可以明显改善面条的黏结现象,并降低其表面黏性,但较高的添加量则会降低小麦粉的面筋质量和湿面筋含量,并使干物质损失率和干物质吸水率升高;微观结构和TOM值的结果表明,WPC的添加使面条蛋白网络孔隙变大,减少了面条表面滞留或附着的淀粉,这可能是WPC改善面条黏结现象的原因。  相似文献   

8.
《Journal of dairy science》1987,70(12):2493-2498
Cream-based liqueurs prepared with whey protein concentrate showed stability and were more preferred than a commercial cream-based liqueur. Variations in product preparation included level of ingredient used as well as order of ingredient addition. Product made with washed cream and ethanol added before homogenization was stable for 90 d at 40° C. Comparison of the most stable experimental product to a commercial liqueur by sensory evaluation showed no significant differences in sweetness, texture, smoothness, and overall preference. The commercial product showed more off-flavors and a heavier body than the most stable experimental samples.  相似文献   

9.
Heat-Induced Changes in the Proteins of Whey Protein Concentrate   总被引:2,自引:0,他引:2  
Three-level fractional factorial experiments were used to study effects of heating conditions (pH, time, temperature, solids content, calcium addition) on whey protein concentrate. Increasing pH and temperature led to lower solubility at pH 4.6 and 7.0, lower sulfhydryl content, higher hydroxymethylfurfural, generally darker color, lower DNBS-available lysine and altered pepsin pancreatin digestion profiles. Mercaptoethanol and SDS demonstrated relative importance of disulfide and hydrophobic bonds on solubility loss. Polyacrylamide gel electrophoresis indicated heat stability of proteose peptones; susceptibility was greatest at pH 8.0, 95°C for β-lactoglobulin and α-lactalbumin, and pH 4.6, 95°C for bovine serum albumin. HPLC gel filtration showed that heating rendered a high molecular weight fraction undissociable by mercaptoethanol.  相似文献   

10.
任国谱  余兵 《食品科学》2010,31(20):11-14
用乳清浓缩蛋白WPC80 为原料,在复合酶A 的作用下,研究乳清肽的制备工艺。复合酶A 的反应条件为[S]12g/100mL、温度50℃、[E]/[S]3%、pH9.0。选用截留分子质量10kD 的磺化聚砜膜,常温并在工作压差0.25MPa 下对水解液进行超滤处理后,选用树脂HZ00x 对水解液进行脱苦,得到的处理液无明显的苦涩味,只有轻微的蛋腥味,最后肽得率36.54%。产品中肽的分子质量分布以二、三和四肽为主,分别占峰面积的27.45%、34.88% 和26.65%。  相似文献   

11.
通过不同截留分子质量的再生纤维素膜过滤纯化牦牛原乳清液和牦牛甜乳清液,分别制取牦牛原乳清蛋白浓缩物(native whey protein concentrate,NWPC)和牦牛甜乳清蛋白浓缩物(sweet whey protein concentrate,SWPC),研究蛋白含量不同的乳清蛋白浓缩物(whey pr...  相似文献   

12.
ABSTRACT: The effects of high hydrostatic pressure (HHP) on flavor-binding properties of whey protein concentrate (WPC) were determined with benzaldehyde, heptanone, octanone, and nonanone. After HHP treatment (600 MPa, 50 °C, for 0-, 10-, or 30-min holding time), flavor-binding properties of WPC were studied by intrinsic fluorescence titration and static headspace analysis. The HHP treatments increased the number of binding sites and the apparent dissociation constants of WPC for benzaldehyde. HHP treatment of WPC for 0 min increased the number of binding sites of WPC for heptanone and octanone. As observed by headspace analysis, HHP treatments did not result in significant changes in the flavor retention for benzaldehyde in WPC solutions. Flavor retention of 100 ppm and 200 ppm heptanone and octanone in HHP-treated (10 min) WPC was significantly lower than for untreated WPC and HHP-treated WPC for 0 min or 30 min. For flavor retention of nonanone, significant decreases were only observed at 100 ppm when WPC solutions were HHP-treated for 10 min. While use of HHP treatment of WPC has potential in real food systems, these findings demonstrate the importance of careful selection of HHP treatment times and flavor concentrations for desired outcomes in food applications.  相似文献   

13.
Oil-in-water emulsions (0.4 wt% protein, 20 vol%n-tetradecane, pH 7) prepared with solutions of pressure-treated (up to 800 MPa) whey protein concentrate (WPC) as emulsifier give a broader droplet-size distribution than emulsions made with native untreated protein. There was a decrease in emulsifying efficiency with increasing applied pressure and treatment time. In contrast, pressure treatment of corresponding WPC emulsions made with the native protein had little effect on emulsion stability. In the pressure-treated emulsion the protein is probably already conformationally modified so that pressure has little additional effect. However, in solution the native structure of the whey protein is modified by pressure resulting in loss of emulsifying efficiency.  相似文献   

14.
Properties of gels prepared from five whey protein concentrates (WPC) with protein solubilities ranging from 27.5% to 98.1% in 0.1M NaCl, pH 7.0, chicken breast salt-soluble protein (SSP), or a combination of SSP and WPC at pH 6.0, 7.0 or 8.0 were compared. WPC did not form gels when heated to 65°C. SSP gels heated to 65°C were harder than those heated to 90°C at all pHs and hardness decreased as pH was increased. Hardness of combination gels heated to 65°C increased as WPC solubility decreased at all pHs; however, the opposite trend was observed at 90°C. Combination gels of the same WPC solubility at 65°C were more deformable than those heated to 90°C.  相似文献   

15.
本文以乳清蛋白(Whey protein concentrate,WPC)和卵清蛋白(Egg white protein,EWP)为成膜基质,添加5 U/g蛋白转谷氨酰胺酶(Transglutaminase,TG)制备WPC/EWP复合膜,分别研究WPC和EWP质量比、膜液pH、甘油添加量对WPC/EWP复合膜结构及性能的影响。结果表明,当WPC/EWP质量比为1:3,成膜液pH为8,甘油添加量为35%时,电镜结果表明形成的复合膜结构致密无孔隙,红外结果显示WPC和EWP有较好的相容性。WPC/EWP复合膜的水蒸气透过率为2.08×10?10 g·s?1m?1Pa?1,透光率为73.90%,抗拉强度为1.60 MPa,断裂伸长率为151.96%。WPC、EWP和甘油在膜液pH为8时具有良好的融合性,能显著(P<0.05)提高WPC/EWP复合膜的机械性能。  相似文献   

16.
17.
《Journal of dairy science》1986,69(10):2543-2550
Cheddar cheese was produced from whole milk with blends of whey protein concentrates added. Two whey protein concentrate powders containing 35 or 55% protein were each reconstituted to a 15% (wt/wt) suspension and heat treated at 70°C for 15 min. Addition of the denatured whey protein concentrate suspension to the milk was at 5 or 10% by weight of the milk. Addition of reconstituted partially denatured whey protein concentrate increased cheese yields from 1.4 to 6.2% above those of the control on a 63% solids basis. The only significant (P<.05) increase in yield was from the 55% whey protein concentrate suspension at 10% replacement by weight of the milk. The correlation coefficient between percent denaturation in the whey protein concentrate and yield in this cheese was .62. Experimental cheese had decreased fat and total solids contents and increased total nitrogen, ash, and salt. Fat reduction varied from 4.3 to 18.2% below the control cheese, and total solids were from 1.7 to 8.9% below the control cheeses. Total nitrogen values of experimental cheese were from .73 to 5.64% above the control. Cheeses were evaluated organoleptically; more flavor defects were associated with increased whey protein concentrate in the experimental cheese. The most common criticism of the experimental cheese was an atypical (unclean) cheese flavor.  相似文献   

18.
为了研究胰蛋白酶限制性修饰对乳清浓缩蛋白(WPC)热致聚合物的微观形态及表面性质的影响,本文制备了胰蛋白酶在不同水解度(DH为0.2%、0.6%和1%)限制性修饰后的WPC在p H 2.0、90℃下热致聚合物,利用透射电镜分析了聚合物的微观形态特征,测定了不同聚合物的表面性质。结果表明,纤维聚合物较常规p H条件下形成的无定形聚合物具有较差的乳化活性和乳化稳定性以及较优的起泡和泡沫稳定性。胰蛋白酶修饰促进WPC纤维聚合物的形成,乳化活性较天然WPC形成纤维稍有提高;起泡性和泡沫稳定性显著提高,在DH为0.6%时起泡提高幅度最大,较天然WPC纤维提高了11.76%;在DH为1%时,泡沫稳定性较天然WPC纤维提高了12.59%。WPC经胰蛋白酶修饰后所形成更优的纤维结构以及表面疏水性的提高有利于其界面性质的提高。  相似文献   

19.
为提高乳清浓缩蛋白(Whey protein concentrates, WPC)微胶囊的稳定性和包封率,利用肉桂醛(Cinnamaldehyde,CA)修饰WPC稳定的微胶囊界面。通过粒径、包封率、含水量、溶解性和微观结构等优化微胶囊的制备工艺,评价添加CA对WPC微胶囊品质的影响。结果表明,WPC浓度为5%,油相含量为5%时,添加1% CA的微胶囊包封率高达92.12%,而不添加CA的微胶囊包封率仅为55.68%。添加CA使微胶囊饱满圆润,表面致密光滑,能提高低油含量并稳定高油含量微胶囊的包封率,在一定程度改善其溶解特性,为蛋白微胶囊及其相关功能产品的开发提供信息。  相似文献   

20.
为研究蛋白质-蛋白质相互作用对松仁蛋白(PKP)溶解度、结构和乳液性质的影响,以PKP和乳清浓缩蛋白(WPC)为研究对象,采用pH循环法制备PKP-WPC复合蛋白,利用SDS-PAGE、内源性荧光光谱、紫外-可见光谱、圆二色谱、荧光探针和ζ-电位等方法分析了复合蛋白结构特性和表面特性,再以PKP-WPC复合蛋白为原料,分别制备了油相体积分数为3%、10%和50%的乳液,并对制备的乳液性质进行了检测。结果表明:当WPC与PKP的质量比为1.0∶1.0,且体系pH值经历由7.0到12.0再回到7.0时的1次pH循环后,PKP的水溶性可从48.53%提高到92.43%。SDS-PAGE结果显示,PKP-WPC复合蛋白完整保留了PKP和WPC的亚基。内源性荧光光谱、紫外-可见光谱和圆二色谱结果表明,静电相互作用、疏水相互作用和氢键是驱动PKP和WPC相互作用的主要作用力,PKP与WPC相互作用使复合蛋白具有较高的结构韧性,抵抗酸诱导的构象折叠;WPC的加入改变了PKP的二级结构,α-螺旋、β-转角和无规卷曲结构的含量增加,而β-折叠结构相对含量降低。PKP-WPC复合蛋白具有较高的表面电荷(-34.74mV)来抵抗蛋白质的聚集。与由PKP制备的乳液相比,由PKP-WPC制备的乳液平均粒径和乳层析指数减小,ζ-电位绝对值增大,稳定性显著提高。乳液的性质因油相体积分数的不同而有较大的差异。油相体积分数为3%的复合乳液液滴小且分布均匀,稳定性好于油相体积分数为10%和50%的复合乳液。通过pH循环法,通过添加WPC,提高了PKP的溶解度,获得了稳定性较佳的PKP乳液,研究可为新型蛋白产品的研发提供理论基础,拓宽松仁蛋白在加工食品中的应用范围,推动PKP-WPC双蛋白乳液研究的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号