首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
环境友好半导体β-FeSi2薄膜的制备方法研究   总被引:1,自引:0,他引:1  
分析了制备和热处理过程中薄膜沉积方法和沉积条件、沉积速率、薄膜厚度、热处理方法和热处理条件等因素对β-FeSi2相的形成的影响,结果表明,影响β-FeSi2相形成的决定性因素是热处理的温度和时间,此外薄膜的沉积方法和薄膜厚度对β-FeSi2相也有重要的影响。  相似文献   

2.
用磁控溅射方法制备β-FeSi2/Si异质结,在分析其伏安特性的基础上探索其是否适合制备红外探测器,XRD、SEM分析表明,该方法能得到纯净、表面平整的β-FeSi2/Si薄膜;在室温下异质结的I—V特性具有很好的整流特性,整流效率约为Idirect/Ireverse~10^2,分流电阻约为38.4kΩ,零偏压下的电流响应率约为26μA/W。推算结果表明,该异质结的红外探测率约为1.479×10^9cm·√Hz/W,适合用于制备红外探测器。  相似文献   

3.
李强  王海燕 《功能材料》2006,37(11):1762-1764
采用离子束溅射Fe靶的方法在500~800℃的Si(111)衬底上制备出不同种类的铁硅化合物.当衬底温度为700℃时得到厚度为500nm的单相的β-FeSi2薄膜,高分辨透射电镜证实该β-FeSi2薄膜为局部外延,薄膜和Si衬底之间界面明显,没有中间层.  相似文献   

4.
磁控溅射法沉积的Fe/Si多层膜和Fe单层膜经真空热处理后制备了β-FeSi2薄膜。[Fe1nm/Si3.2nm]60多层膜在〈880℃温度下真空热处理2h后,样品均呈现β(220)/(202)择优取向,而Fe单层膜制备的样品则易形成β-FeSi2与ε-FeSi相的混合物,且取向杂乱。在920℃真空热处理后,两种样品都形成了α-FeSi2薄膜。原子力显微镜分析表明,样品表面粗糙度随热处理温度升高而变大,最大表面均方根粗糙度约为16nm。卢瑟福背散射分析发现,Fe/Si多层膜样品热处理过程中元素再分布很小。根据光吸收谱测量,Fe/Si多层膜制备的β-Fesi2薄膜的禁带宽度为0.88eV。  相似文献   

5.
用TEM研究了离心铸造和挤压铸造的SiCp/ZL109复合材料,发现Si优先在SiC表面上形核、长大,并形成大量"界面Si"及SiC/Si界面.SiC与Si之间不存在固定的晶体学位向关系,但存在(1101)sic//(111)si,[1120]sic∥[112]si优先出现的位向关系,而(0001)sic∥(111)si不是优先出现的位向关系.  相似文献   

6.
本文利用X射线衍射和透射电子显微镜对离子注入合成的 β FeSi2 和 β Fe(C ,Si) 2 薄膜进行了研究。对掺杂C前后样品的对比研究表明 ,选择C作为掺杂元素 ,能够得到界面平直、厚度均一的高质量 β相薄膜 ,晶粒得到细化 ,β FeSi2 层稳定性提高 ,因此从微结构角度考虑 ,引入C离子对于提高 β FeSi2 薄膜的质量是很有益处的。进一步进行光学吸收表征 ,发现C离子的引入对 β层的Edg 值没有产生明显影响。所以综合来说C离子的引入有利于得到高质量的 β FeSi2 薄膜。用掠入射X射线衍射和Celref程序精确地测量薄膜的晶格常数 ,当C/Fe的剂量比为 0 5 %时 ,尽管C的原子半径比Si的小 ,β相晶格却膨胀了 ,这可能是由于间隙固溶的原因。进一步增加掺杂量到一定的程度时 ,单胞体积会缩小 ,这是由于形成了置换固溶体 ,碳置换了 β单胞中的部分硅  相似文献   

7.
采用磁控溅射的方法,在高真空条件下,沉积金属Fe到Si(100)衬底上,然后通过真空退火炉在不同温度条件下对样品进行热处理,直接形成了β-FeSi2薄膜.采用X射线衍射仪(XRD)对样品进行了晶体结构分析,利用卢瑟福背散射(RBS)对Fe-Si化合物的形成过程中的Fe原子和Si原子的互扩散机理进行了研究,利用扫描电镜(SEM)对样品表面的显微结构进行表征,结果表明,在900℃条件下退火能够得到质量很好的β-FeSi2薄膜,超过这一温度β相将开始向α相转化,到1000℃,β-FeSi2全部转化为α-FeSi2。  相似文献   

8.
详细介绍了β-FeSi2的结构和β-FeSi2薄膜的物理特性,以及基于β-FeSi2薄膜的异质结在光电方面的应用.目前,基于β-FeSi2薄膜的异质结应用的研究主要集中在PL和EL等LED领域,而对其应用于太阳能电池方面的研究还很薄弱,所获得的光电转换效率最高是3.7%,远低于其16%~23%的理论值.  相似文献   

9.
郑旭  张晋敏  熊锡成  张立敏  赵清壮  谢泉 《功能材料》2012,43(11):1469-1471
采用直流磁控溅射和真空退火方法制备β-FeSi2/Si异质结,首先在n型Si(100)衬底上沉积Fe膜,经真空退火形成β-FeSi2/Si异质结,Fe膜厚度约238nm,退火后形成的β-FeSi2薄膜厚度约为720nm。利用XRD、SEM和红外光谱仪分别研究了β-FeSi2薄膜的晶体结构、表面形貌和光学性质。霍尔效应结果表明,制备的β-FeSi2薄膜为n型导电,载流子浓度为9.51×1015cm-3,电子迁移率为380cm2/(V.s)。  相似文献   

10.
离子束溅射沉积Fe/Si多层膜法合成β-FeSi_2薄膜的研究   总被引:1,自引:0,他引:1  
采用离子束溅射沉积Fe/Si多层膜的方法在石英衬底上制备了β-FeSi2薄膜,研究了不同厚度比的Fe/Si多层膜对β-FeSi2薄膜的结构性能、形貌及光学性能的影响。结果表明,厚度比为Fe(2nm)/Si(7.4nm)的多层膜在退火后完全生成了β-FeSi2相,表面致密均匀,其光学带隙为0.84eV,能量为1.0eV光子的吸收系数105cm-1。  相似文献   

11.
文章简要介绍了半导体β—FeSi2的基本性质及制备方法,讲述了β-FeSi2在太阳能电池、红外探测器和热电转换方面的应用,并对目前存在的问题及未来的研究动向做了简要的讨论。  相似文献   

12.
常用的分子束外延、粒子束沉积法难以获得均匀、致密性好的单一相β-FeSi2薄膜,利用脉冲激光沉积及热退火处理法在P型Si(100)基片上制备了均匀的单一相β-FeSi2薄膜。利用X射线衍射仪、扫描电镜、原子力显微镜及红外光谱仪研究了靶基距对β-FeSi2薄膜的结构、组分、结晶质量、表面形貌及光吸收特性的影响。结果表明:随着靶基距的增加,薄膜的晶化程度先变差后增强再变差,晶粒尺寸先减小后增大再减小,颗粒分布均匀性先变好后变差;表面粗糙度先减小后增大;靶基距为40 mm时,β-FeSi2薄膜的结晶度较高,颗粒大小均匀、趋于球形化,薄膜致密性较好,粗糙度较低,对红外光的吸收较好。  相似文献   

13.
β-FeSi2材料的生长、性质及其在光电子器件中的应用   总被引:1,自引:0,他引:1  
过渡金属硅化物β-FeSi2是具有直接带隙特性的半导体材料,禁带宽度约0.8eV,是制作硅基光电子光源及探测器件以及太阳能电池,热电器件等最有发展前景的硅基材料之一。目前,已经用多种方法在硅衬底上进行了薄膜外延生长及器件制作的尝试,取得了一定的成功。文中就近年来β-FeSi2薄膜材料的生长,性质以及在光电子器件中的应用进行了评述。  相似文献   

14.
采用磁控溅射方法,在不同的溅射气压(Ar气0.5-3.0Pa)条件下沉积纯金属Fe到Si(100)衬底上,通过真空退火炉在800℃对样品进行保温2h,直接形成了正交的β-FeSi2薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、椭偏光谱仪,对不同溅射气压下合成的β-FeSi2薄膜的结晶特性、表面形貌及光学性能进行表征,研究了不同溅射气压对制备β-FeSi2薄膜的影响。结果表明:在1.5Pa时能形成较好的β-FeSi2薄膜,临界溅射气压在2.0Pa附近,当溅射气压低与临界值时,β-FeSi2薄膜的成核密度较高,且成核密度随溅射气压的增大而降低;当溅射气压超过临界值以后,β-FeSi2薄膜的成核密度基本不变;薄膜的折射率n随压强的增大而增大,消光系数k随压强的增大而减小。  相似文献   

15.
本文讨论了β-FeSi2热电材料的微观组织结构特征、合金成分、掺杂和晶粒细化对β-FeSi2热电性能的影响,并给出了根据Harm an 方法自制的材料热电性能测量装置的原理与测量方法。  相似文献   

16.
半导体材料β-FeSi2作为一种新型的光学活性材料引起了人们的广泛关注。β-FeSi2材料的发光波长在1.5μm,是光纤通信的重要波段,且能与已经发展起来的硅集成工艺兼容。文章概述了近年来β-FeSi2材料发光性质的研究成果,尤其是在改善发光性能上所做出的努力,为实现材料在器件上的应用和进一步的材料研究提供了有益的参考。  相似文献   

17.
介绍了β-FeSi2合金的基本特性和制备方法.评述了目前通过不同的元素掺杂可制得N型或P型β-FeSi2基半导体材料以及在热电性能方面取得的重要大进展.其中掺杂Co,B元素可得到N型β-FeSi2基半导体材料,且掺杂Co,在850 K最大ZT值为0.4;而掺杂B,高于800 K时Z值是未掺杂3~6倍,在667 K最大Z值为1.18×10-4 K-1.掺杂Mn,Cu,Al可获得P型β-FeSi2基半导体材料,掺杂Mn在873 K时最大Z值达2×10-4 K-1;掺杂Cu可缩短β相的生成时间;掺杂Al,在743 K获得的最大Z值为1.55×10-4 K-1.指出通过结构优化、组分调整,进一步提高β-FeSi2基合金的热电性能.  相似文献   

18.
Au/(Si/SiO2)/p型Si结构的可见电致发光研究   总被引:2,自引:0,他引:2  
Si/SiO2薄膜采用射频磁控溅射技术制备,当正向偏压大于5V时即可观测到来自不同Si层厚度的Au/(Si/SiO2)/p-Si结构在室温下的可见电致发光,其发光谱峰位均位于660nm处,测得的各种储藏坟下的发光峰位不随正向偏压的升高而移动。突验结果表明光发射主要来自于SiO2层中的发光中心上的复合发光。  相似文献   

19.
采用磁控溅射沉积方法制备Mg2Si半导体薄膜。首先在Si衬底上沉积Mg膜,随后低真空热处理。采用X射线衍射、扫描电镜、拉曼光谱对Mg2Si薄膜的结构进行表征。研究了在低真空(10-1~10-2Pa)条件下热处理温度(350~550℃)和热处理时间(3~7h)对Mg2Si薄膜形成的影响。结果表明,低真空热处理条件下制备了单一相Mg2Si半导体薄膜,400~550℃热处理4~5h是最佳的热处理条件。在拉曼谱中256和690cm-1处观察到两个散射峰,这与Mg2Si的拉曼特征峰峰位一致。  相似文献   

20.
采用脉冲激光沉积(PLD)法在p型Si(100)衬底上制备了β-FeSi2半导体薄膜,并在沉积系统中进行了800℃、3h的原位高温退火过程,最后采用X射线衍射仪、3D显微镜、原子力电子显微镜、荧光光谱仪分析了实验样品的晶体结构、表面形貌、元素组成、红外吸收和光致发光特性。分析实验结果发现,制备的单相β-FeSi2多晶半导体薄膜结晶质量良好,β-FeSi2在Si(100)衬底上沿(202/220)方向择优生长,且在常温下测得了β-FeSi2半导体薄膜的光致发光谱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号