首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
Steroids with the 3alpha-hydroxy-5alpha- or 5beta-reduced configurations of the A ring interact with the gamma-aminobutyric acid (GABA) type A receptor chloride channel complex and potentiate the stimulation of Cl- uptake by GABA agonists. Conversely, the sulfate esters of 3beta-hydroxy-5-ene neurosteroids pregnenolone and dehydroepiandrosterone behave as inhibitory modulators. In the present work, steroid sulfates were tested for their ability to modulate muscimol-induced chloride ion uptake into cortical synaptoneurosomes. 3alpha-Hydroxy-5alpha-pregnan-20-one sulfate and several other 3alpha-hydroxy-steroid sulfates potentiated, whereas 3beta-hydroxy-steroid sulfates inhibited muscimol effect. It is concluded that GABA-agonistic or antagonistic properties of steroid sulfates depend on the alpha or beta orientation of the sulfate moiety linked to the A ring.  相似文献   

2.
Biosynthesis of the neuroactive steroids pregnenolone sulfate (delta5PS) and dehydroepiandrosterone sulfate (DHEAS) is catalyzed by the enzyme hydroxysteroid sulfotransferase (HST), which transfers the sulfonate moiety from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) on the 3-hydroxy site of steroids. Although high concentrations of delta5PS and DHEAS have been detected in the rat brain, the anatomical localization of HST in the CNS has never been determined. Using an antiserum against rat liver HST, we have investigated the distribution of HST-like immunoreactivity in the CNS of the frog Rana ridibunda. Two populations of HST-immunoreactive neurons were observed in the hypothalamus, and several bundles of positive nerve fibers were visualized in the telencephalon and diencephalon. Incubation of frog brain homogenates with [35S]PAPS and [3H]pregnenolone yielded the formation of several 3H,35S-labeled compounds, including delta5PS and testosterone sulfate. When [3H]dehydroepiandrosterone and [35S]PAPS were used as precursors, one of the 3H,35S-labeled metabolites coeluted with DHEAS. Neosynthesis of [3H]delta5PS and [3H]DHEAS was reduced significantly by 2,4-dichloro-6-nitrophenol, a specific inhibitor of sulfotransferases. The present study provides the first immunocytochemical mapping of HST in the brain. Our data also demonstrate for the first time that biosynthesis of the highly potent neuroactive steroids delta5PS and DHEAS occurs in the CNS of nonmammalian vertebrates.  相似文献   

3.
4.
Pregnenolone sulfate (PS) acts as a positive allosteric modulator of N-methyl-D-aspartate (NMDA) receptor-mediated responses. In the retina, we previously observed that the synthesis of pregnenolone and PS increases after stimulation of NMDA receptors and blockade of the synthesis reduces retinal cell death. This study was carried out to explore in the isolated and intact retina the possible role of PS in NMDA-induced excitotoxicity. Lactate dehydrogenase (LDH) measurements and morphological analysis revealed that a 90-min exogenous application of PS at 0.1-500 microM concentrations potentiated NMDA-induced cell death and at 50-500 microM concentrations caused cytotoxicity. After 45 min, either NMDA or PS caused no significant LDH release; but their co-application resulted in a high degree of toxicity. In addition, we found that a mild NMDA insult developed into serious damage when even low PS concentrations (0.1-10 microM) were used. Toxicity-inducing and -potentiating effects were specific to PS modulatory action on NMDA receptors, in that they were blocked by 4-(3-phosphonopropyl)2-piperazinecarboxylic acid (CPP) and MK-801 but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and neither dehydroepiandrosterone sulfate nor pregnenolone caused LDH release. Prevention of degenerative signs was seen in retinae pretreated with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a Cl- channel blocker, thus indicating a Na+/Cl--dependent acute mode of excitotoxic cell death responsible for PS toxicity. The positive interaction between the neurosteroid and NMDA receptors was further proved by a PS dose-dependent increase in NMDA-induced stimulation of [3H] MK-801 binding to retinal membranes. The results suggest a crucial role of PS in retinal vulnerability and propose the toxicity-potentiating effects as an important key in linking NMDA-induced endogenous synthesis to acute excitotoxicity.  相似文献   

5.
Experiments were designed to investigate the influence of estrous cycle and gender of the rat on the effects of a gamma-aminobutyric acid type A (GABA(A)) receptor active neurosteroid, 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), the benzodiazepine, triazolam, and a GABA(A) receptor antagonistic neurosteroid, delta5-androsten-3beta-ol-17-one sulfate (dehydroepiandrosterone sulfate), on food intake and elevated plus-maze learning behaviors. Allopregnanolone (0.25 mg/kg, s.c.) and triazolam (0.25 mg/kg, i.p.) produced a hyperphagic effect, while dehydroepiandrosterone sulfate (5 mg/kg, s.c.) elicited an anorectic effect. However, allopregnanolone was more potent in diestrous females, whereas triazolam exhibited significantly higher hyperphagic potency in estrus females. The extent of anorexia following dehydroepiandrosterone sulfate was alike in male and female rats. The triazolam- and allopregnanolone-induced hyperphagic effect was blocked by bicuculline (1 mg/kg, i.p.), a selective GABA(A) receptor antagonist. In contrast to triazolam, the hyperphagic effect of allopregnanolone was insensitive to flumazenil (5 mg/kg, i.p.), a benzodiazepine antagonist. Vehicle-treated diestrous rats displayed moderately higher latencies in the elevated plus-maze learning task than estrus or proestrus females. Although allopregnanolone and triazolam elicited equipotent learning deficits in plus-maze learning in male and female rats, the magnitude of impairment-induced by triazolam was significantly higher in diestrous females than proestrus females. Dehydroepiandrosterone sulfate enhanced memory performance only in male rats. Although the use of the elevated plus-maze as a learning paradigm with benzodiazepines and neurosteroids may be sensitive to changes in anxiety, the differential data suggest that neurosteroid-induced effects are at least partly specific to learning behavior. These results confirm the role of estrous cycle and sex of rats in modifying the potency of neurosteroids and benzodiazepines on food consumption and learning and memory processes.  相似文献   

6.
Although the incidence of gastric cancer varies widely between countries it is nonetheless a leading cause of cancer deaths worldwide. Migration studies indicate that dietary choices are an important exogenous factor. The United States has a very low incidence of gastric cancer, suggesting that exogenous etiological agents are at a minimum and providing a favorable setting for detecting important endogenous etiological factors. Dehydroepiandrosterone and dehydroepiandrosterone sulfate are endogenous steroids produced in the adrenal gland. Epidemiological studies show that the risk of developing specific cancers is related to the serum or urinary levels of these steroids. In addition, dehydroepiandrosterone prevents a variety of spontaneous and chemically induced tumors when administered to laboratory animals. To examine the association between circulating levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate and the development of gastric cancer, we measured the serum levels of these steroids in 13 individuals who donated serum to the Washington County Maryland serum bank in 1974 and who subsequently developed gastric cancer and in 52 matched controls. Prediagnostic serum levels of dehydroepiandrosterone were 38% lower in cases as compared to controls (P = 0.09). The risk of developing gastric cancer increased with decreasing levels of both steroids. Adjustment for confounding factors such as smoking or the interval between blood donation and time to diagnosis did not alter the findings. These results suggest that there may be a role for this steroid in the prevention of gastric cancer.  相似文献   

7.
The high concentrations of dehydroepiandrosterone sulfate and pregnenolone sulfate in the mammalian brain, despite the blood-brain barrier's impermeability to these compounds, and the apparent independence of these concentrations from those in plasma prompted us to investigate whether enzymatic sulfation of dehydroepiandrosterone was detectable in the rat brain. Low hydroxysteroid sulfotransferase activities were detectable in in vitro incubations of homogenates from all rat brain regions except the cerebellum, being highest in the hypothalamus and pons. This activity was not ascribable to enzyme in brain capillary blood. The activity was mainly cytosolic, although there was also significant activity in the partially purified nuclear fraction. The enzyme had different properties from those of hepatic isozymes, with a pH optimum of 6.5 and a high Km of approximately 2 mM for dehydroepiandrosterone. The enzyme was also active with pregnenolone as substrate. Activities in the brain were approximately 300-fold lower than in the liver but, as in the liver, these were higher in females than in males. The variations in brain activity as a function of age did not parallel those in the liver. Relatively high activities were found in the fetal brain and declined at birth, while activities were insignificant in the fetal liver and rose following birth. There was a major peak in activity in pubertal female brains, but this peak was less important, and later, in males. No evidence was found to indicate that the low brain enzyme activities and high Km were attributable either to the presence of an inhibitor or to the steroid sulfation actually being a secondary activity of another brain sulfotransferase. We discuss whether the sulfotransferase activities found are adequate to synthesize the dehydroepiandrosterone and pregnenolone sulfate found in brain.  相似文献   

8.
Excessive stimulation of the N-methyl-d-aspartate (NMDA)-type glutamate receptor has been implicated in the neuronal death resulting from focal hypoxia-ischemia. Certain neurosteroids, steroids synthesized de novo in the central nervous system (CNS), have been shown to modulate the action of neurotransmitters at their cellular receptors. Pregnenolone sulfate (PS) is an abundant neurosteroid that enhances the current evoked by NMDA. Using the Ca2+-sensitive fluorescent dye, Fluo-3, AM, and a trypan blue exclusion assay, we evaluated the ability of PS to modulate NMDA-induced changes in intracellular free calcium concentration ([Ca2+]i) and neuronal death in primary cultures of rat hippocampal neurons. The results demonstrate that PS potentiates NMDA-induced increases in [Ca2+]i by 150%. Further, PS exacerbates the MK-801-sensitive neuronal death produced by acute (PS EC50=37 microM) or chronic NMDA exposure, reducing the EC50 of NMDA from 13 to 4 microM under chronic exposure conditions, whereas pregnenolone is ineffective. Our results show that PS, or related sulfated neurosteroids, may play a role in the onset of excitotoxic neuronal death in vivo.  相似文献   

9.
The progesterone-initiated human sperm acrosome reaction (AR) requires a rise in intracellular Ca2+ ([Ca2+]i), extracellular Cl- and apparently increased Cl- flux through a unique steroid receptor/Cl- channel resembling but not identical to a GABA(A)/Cl- channel complex. The present study uses fura-2 loaded human sperm, GABA(A)/Cl- channel blockers (picrotoxin and pregnenolone sulfate) and Cl(-)-containing and Cl(-)-deficient media to determine whether the progesterone-mediated increase in [Ca2+]i is dependent on the Cl- requirement. There was no significant difference between the progesterone-mediated increases of [Ca2+]i obtained in Cl(-)-containing and Cl(-)-deficient media. Picrotoxin did not significantly inhibit the progesterone-mediated increase in [Ca2+]i, and pregnenolone sulfate increased [Ca2+]i to the same extent as progesterone. These results strongly suggest that the increase in [Ca2+]i essential to the AR is independent of the AR Cl- requirement and could be explained by the existence of two different sperm plasma membrane progesterone receptors.  相似文献   

10.
The melanotrophs of the neurointermediate lobe and peptidergic terminals of the neural lobe are regulated by gamma-aminobutyric acid (GABA) via GABA-A receptors and therefore, may be important sites for the modulatory actions of neurally active steroids. These steroid compounds might be produced peripherally, synthesized de novo in the pituitary, or derivatized from circulating steroids, each pathway having different physiological implications. In the present study, we show that neurointermediate lobe tissue can derivatize progesterone to the neurally active steroid 3 alpha-hydroxy-5 alpha-pregnan-20-one. The neurointermediate lobe was found to be four times as active as anterior pituitary and mediobasal hypothalamus in conversion of progesterone to 3 alpha-hydroxy-5 alpha-pregnan-20-one; mediobasal hypothalamus was relatively more active in the production of the intermediate 5 alpha-pregnan-3,20-dione. The identity of the compounds was confirmed by the method of serial isotopic dilution. We observed rates of synthesis in the neurointermediate lobe consistent with the production of physiologically relevant quantities of 3 alpha-hydroxy-5 alpha-pregnan-20-one from concentrations of progesterone which can occur naturally. In support of these findings, we demonstrate the presence of 3 alpha-hydroxysteroid oxidoreductase in neurointermediate lobe by immunocytochemistry.  相似文献   

11.
The long-sleep (LS) and short-sleep (SS) mice were selected for differences in sensitivity to ethanol but also differ in response to propofol and some neurosteroids. To determine the role of strychnine-sensitive glycine receptors in genetic differences between these mice, effects of propofol, ethanol and pregnenolone sulfate on glycine responses were compared in Xenopus oocytes expressing mRNA extracted from spinal cord of LS and SS mice. The two lines of mice did not differ in sensitivity to glycine, ethanol or pregnenolone sulfate. However, receptors expressed from LS mRNA were more sensitive to the potentiation induced by propofol than those from SS. Binding of [3H]strychnine to spinal cord membranes demonstrated a similar affinity and density of receptors in LS and SS. These results suggest that glycine receptor function could account for differences in propofol sensitivity between LS and SS mice, but may not be responsible for the differences in behavioral sensitivity to ethanol or steroids previously reported.  相似文献   

12.
A rapid method is described for the determination of some steroidal hormones in adrenal tissue. The following steroids were measured: pregnenolone, progesterone, deoxycorticosterone, corticosterone, aldosterone, 17-alpha-OH-pregnenolone, deoxycortisol, cortisol, cortisone, 17-alpha-OH-progesterone, dehydroepiandrosterone, androstendione, and testosterone. After extraction of the steroids the purification steps were performed by thin layer chromatography. Gas chromatography was used for further separation and quantitative analysis of underivatized steroids. The GC-analysis of steroids without any derivatisation makes this procedure comparatively simple and exact. Recovery of the steroid content of the tissue ranged from 30% to 70%. This method described herewith has several advantages, and allows the analysis of two tissues at the same time for a large number of adrenal steroids within two weeks.  相似文献   

13.
Several steroids, termed 'neurosteroids', are synthesized from cholesterol within both the central and peripheral nervous systems. These include pregnenolone and its sulfate ester, progesterone and its 5 alpha-reduced metabolites. Dehydroepiandrosterone, mainly in its sulfated form, also remains present in the brain long after removal of the steroidogenic endocrine glands. Its biosynthesis in brain remains an open possibility, but the pathways involved are unknown. Little information is available concerning the role of neurosteroids during the maturation of the nervous system, although they are already synthesized by glial cells and by some populations of neurons during embryonic life. Cell culture experiments suggest that neurosteroids may increase the survival and differentiation of both neurons and glial cells. In the adult nervous system, neurosteroids modulate neurotransmission by acting directly on the neuronal membrane and also produce structural changes in neurons and in astrocytes. Studies of neurosteroid levels are currently conducted to examine their possible role during aging. We have recently reported that progesterone, synthesized by Schwann cells, promotes the formation of new myelin sheaths after lesion of the mouse sciatic nerve. Thus, neurosteroids may also play an important role during regeneration of the nervous system.  相似文献   

14.
The general aging sequence in tissues of healthy human beings is proposed to be: capillary endothelial cell damage --> arteriosclerosis --> decreased blood flow --> metabolic dysregulation --> secondary tissue damage. Molecular O2 is an obligatory substrate for the successive syntheses of 17alpha-OH pregnenolone and dehydroepiandrosterone (DHEA) by cytochrome P450c17 in the zona reticularis of the adrenal cortex, in which it is suggested that arteriosclerosis --> decreased blood flow --> O2 and glucose deficit --> decreased O2-requiring synthesis of DHEA --> eventual decrease in number of DHEA-synthesizing cells. Aging changes in the zona reticularis synergize with those in the hypothalamo-hypophyseal machinery that controls it neurally and hormonally, with ACTH-evoked pulsatile floods of cortisol coming from the adrenal zona fasciculata, with the onslaught of free radicals generated by the metabolism of catecholamines released from interdigitating cells of the adrenal medulla, and with age-correlated disabilities of erythrocytes to bind and release O2 to decrease the viability of the DHEA and dehydroepiandrosterone sulfate (DHEAS)-forming cells. One of the chief functions of serum DHEAS in the male may be to act as an allosteric facilitator of the binding of testosterone (T) to serum albumin, thereby helping target T to specific receptors and to allosteric sites for rapid and efficient action at the cellular level. There is reason to consider combining O2 therapy with appropriate administration of DHEA and T to optimize steroid functionality in the healthy aging male, and thus, possibly, to alleviate some of the age-related cognitive and physical decrements that occur.  相似文献   

15.
We investigated the effects of pregnenolone sulfate (PS) on the [Ca2+]i increase induced by gamma-aminobutyric acid (GABA) and N-methyl-D-aspartate (NMDA) using fluorescence imaging. PS inhibited the 50 microM GABA-induced increase in [Ca2+]i in a dose-dependent manner with an IC50 of 30 microM. The inhibitory effect of PS was apparent within 5 min and was in a non-competitive manner, suggesting that PS may act directly to the membrane level but indirectly to the GABA binding sites. Our previous study has already shown that the GABA-induced Ca2+ increase involves GABAA receptors and the similar pathway to a high K(+)-induced Ca2+ response (Takebayashi et al., 1996). Because 50 microM of PS could not inhibit a 25 mM K(+)-induced Ca2+ increase, it seems likely that the site of the inhibitory action of PS on the GABA-induced Ca2+ increase may be independent of the pathway of the high K(+)-induced Ca2+ response, but rather at GABAA receptor complex. In contrast, PS potentiated the 50 microM NMDA-induced increase in [Ca2+]i in a dose-dependent manner. The magnitude of the NMDA response was approximately doubled in the presence of 100 microM of PS. However, PS did not affect the acetylcholine(Ach)-induced increase in [Ca2+]i. Furthermore, corticosterone had little effect on the GABA- and NMDA-induced Ca2+ increases, indicating that the alteration of the Ca2+ response is specific for PS. In conclusion, it is suggested that PS modulates differentially [Ca2+]i increase induced by GABA and NMDA.  相似文献   

16.
A number of steroids seem to have anesthetic effects resulting primarily from their ability to potentiate currents gated by gamma-aminobutyric acidA (GABAA) receptor activation. One such compound is (3alpha,5alpha, 17beta)-3-hydroxyandrostane-17-carbonitrile [(+)-ACN]. We were interested in whether carbonitrile substitution at other ring positions might result in other pharmacological consequences. Here we examine effects of (3beta,5alpha, 17beta)-17-hydroxyestrane-3-carbonitrile [(+)-ECN] on GABAA receptors and Ca2+ channels. In contrast to (+)-ACN, (+)-ECN does not potentiate GABAA-receptor activated currents, nor does it directly gate GABAA-receptor mediated currents. However, both steroids produce an enantioselective reduction of T-type current. (+)-ECN blocked T current with an IC50 value of 0.3 microM with a maximal block of 41%. (+)-ACN produced a partial block of T current (44% maximal block) with an IC50 value of 0.4 microM. Block of T current showed mild use- and voltage-dependence. The (-)-ECN enantiomer was about 33 times less potent than (+)-ECN, with an IC50 value of 10 microM and an amount of maximal block comparable to (+)-ECN. (+)-ECN was less effective at blocking high-voltage-activated Ca2+ current in DRG neurons (IC50 value of 9. 3 microM with maximal block of about 27%) and hippocampal neurons. (+)-ECN (10 microM) had minimal effects on voltage-gated sodium and potassium currents in rat chromaffin cells. The results identify a steroid with no effects on GABAA receptors that produces a partial inhibition of T-type Ca2+ current with reasonably high affinity and selectivity. Further study of steroid actions on T currents may lead to even more selective and potent agents.  相似文献   

17.
The effectiveness of steroid hormone metabolites as sedatives and anesthetics has been known for many years. More recently, their interaction with neurotransmitter receptors has helped to elucidate their mechanism of action, but their physiological functions and their role in disturbances of behavior, anxiety, and sleep/wakefulness have yet to be elucidated. Until 1981 it was assumed that metabolites of steroid hormones arose from the adrenals and gonads and that their action on neurotransmitter receptors was a mechanism of communication between the brain and the periphery. The evidence that the brain could accumulate steroids independently of the adrenals and gonads in 1981 and later the evidence for the presence of the cholesterol side chain cleavage enzyme (P450scc) in the brain have challenged this concept and stimulated a great deal of interest in the possibility that the brain could be making its own steroids from cholesterol for some as yet undefined purpose. In this review we examine the data pertaining to the role of brain P450 in the synthesis and degradation of neurosteroids. We summarize the data on the presence of P450scc in the brain and try to answer the following questions: (1) Does P450scc in the brain contribute significantly to the synthesis of GABAA receptor active steroids? (2) Can the P450scc in the brain account for the accumulation of pregnenolone in the brain? (3) Is there evidence for special functions of the pregnenolone synthesized in the brain? (4) Is there a role for other forms of brain P450 in neurosteroid action?  相似文献   

18.
The principal inhibitory neurotransmitter GABA (gamma-aminobutyric acid) exerts its effects through two ligand-gated channels, GABA(A) and GABA(C) receptors, and a third receptor, GABA(B) , which acts through G proteins to regulate potassium and calcium channels. Cells heterologously expressing the cloned DNA encoding the GABA(B)R1 protein exhibit high-affinity antagonist-binding sites, but they produce little of the functional activity expected from studies of endogenous GABA(B) receptors in the brain. Here we describe a new member of the GABA(B) polypeptide family, GABA(B)R2, that shows sequence homology to GABA(B)R1. Neither GABA(B)R1 nor GABA(B)R2, when expressed individually, activates GIRK-type potassium channels; however, the combination of GABA(B)R1 and GABA(B)R2 confers robust stimulation of channel activity. Both genes are co-expressed in individual neurons, and both proteins co-localize in transfected cells. Moreover, immunoprecipitation experiments indicate that the two polypeptides associate with each other, probably as heterodimers. Several G-protein-coupled receptors (GPCRs) exist as high-molecular-weight species, consistent with the formation of dimers by these receptors, but the relevance of these species for the functioning of GPCRs has not been established. We have now shown that co-expression of two GPCR structures, GABA(B)R1 and GABA(B)R2, belonging to the same subfamily is essential for signal transduction by GABA(B) receptors.  相似文献   

19.
Transfer of steroidal and nonsteroidal compounds across guinea pig amnion and chorion laeve was investigated as a function of stage of gestation, tissue orientation, steroid specificity, and molecular size. Each fetal membrane was examined at early and late stages of gestation, before and after pubic symphysis relaxation. Early amnion was impermeable to macromolecules and small charged molecules while [3H]estrone and [3H]pregnenolone were transferred, the latter depending on tissue orientation and involving conjugation at the basolateral interface. After symphysis dilation, amnion transferred all substrates tested with the exception of BSA; the molecular weight cutoff was approximately 5,000. Unlike amnion, early chorion transferred both free and conjugated steroids as well as inorganic sulfate. Transfer of estrone involved conjugation and depended on tissue orientation. Transfer of [3H]estrone-sulfate, [3H]estrone-glucuronide, and [3H]pregnenolone-sulfate was similar despite selective deconjugating activity toward estrone-sulfate. Near term, chorion was impermeable to inorganic sulfate and transfer of estrone-glucuronide depended on tissue orientation, involving deconjugation in the maternal to fetal direction. At no stage of gestation did chorion transfer macromolecules. These results suggest that the transfer of free and conjugated steroids across fetal membranes is differentially regulated by tissue, its stage of development, and direction of transfer.  相似文献   

20.
Release of the excitatory neurotransmitter glutamate and the excessive stimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors is thought to be responsible for much of the neuronal death that occurs following focal hypoxia-ischemia in the central nervous system. Our laboratory has identified endogenous sulfated steroids that potentiate or inhibit NMDA-induced currents. Here we report that 3alpha-ol-5beta-pregnan-20-one hemisuccinate (3alpha5betaHS), a synthetic homologue of naturally occurring pregnanolone sulfate, inhibits NMDA-induced currents and cell death in primary cultures of rat hippocampal neurons. 3alpha5betaHS exhibits sedative, anticonvulsant, and analgesic properties consistent with an action at NMDA-type glutamate receptors. Intravenous administration of 3alpha5betaHS to rats (at a nonsedating dose) following focal cerebral ischemia induced by middle cerebral artery occlusion significantly reduces cortical and subcortical infarct size. The in vitro and in vivo neuroprotective effects of 3alpha5betaHS demonstrate that this steroid represents a new class of potentially useful therapeutic agents for the treatment of stroke and certain neurodegenerative diseases that involve over activation of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号