首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of a metabotropic glutamate receptor mGluR2 in the central nervous system was immunohistochemically examined in the rat and mouse with a monoclonal antibody raised against an N-terminal sequence of rat mGluR2 (amino acid residues 87-134). Neuronal cell bodies with mGluR2-like immunoreactivity (mGluR2-LI) were clearly shown in the horizontal cells of Cajal in the cerebral cortex, neurons in the triangular septal nucleus and medial mammillary nucleus, Golgi cells and the unipolar brush cells in the cerebellar cortex, and Golgi-like and unipolar brush-like cells in the cochlear nucleus. Neuropil was intensely immunostained in the accessory olfactory bulb, bed nucleus of the accessory olfactory tract, neocortex, cingulate cortex, retrosplenial cortex, subicular and entorhinal cortices, stratum lacunosum-moleculare of CA1 and CA3, molecular layer of the dentate gyrus, periamygdaloid cortex, basolateral amygdaloid nucleus, bed nucleus of the anterior commissure, caudate-putamen, accumbens nucleus, thalamic reticular nucleus, anteroventral and paraventricular thalamic nuclei, granular layer of the cerebellar cortex, anterior and ventral tegmental nuclei, granular layer of the cochlear nucleus, and parvicellular part of the lateral reticular nucleus. Many axons in the white matter and fiber bundles were also immunostained. No glial cells with mGluR2-LI were found. No particular species differences were found in the distribution pattern of mGluR2-LI between the rat and mouse. The results indicate that mGluR2 is expressed not only in somato-dendritic domain, but also in axonal domain of excitatory and inhibitory neurons.  相似文献   

2.
This study demonstrates that many neurons in the somatosensory cortex, cingulate cortex, retrosplenial cortex and hippocampal subiculum of the mouse brain are covered by sulfated proteoglycans which are intensely negative-charged and stained with cationic iron colloid, while being digested with hyaluronidase. Neurons with similar perineuronal proteoglycans are also recognized in the extrapyramidal system (superior colliculus, red nucleus, reticular formation, vestibular nuclei and cerebellar nuclei), in the secondary auditory system (cochlear nuclei, nucleus of trapezoid body, inferior colliculus and nucleus of lateral lemniscus), in the vestibulo-ocular reflex system (vestibular nuclei and extraocular motor nuclei), and in the pupillary reflex system. The neurons with perineuronal sulfated proteoglycans in the cerebral cortices and hippocampal subiculum are usually labeled with the lectin Vicia villosa agglutinin, though those in the cerebellar, vestibular and cochlear nuclei may not be reactive to this lectin. Double staining of the retrosplenial cortex, hippocampal subiculum and cerebellar nuclei with Golgi's silver nitrate and cationic iron colloid indicates that the perineuronal sulfated proteoglycans are identical with the Golgi's reticular coating or glial nets.  相似文献   

3.
Lurcher mutant mice are characterized by massive degeneration of cerebellar Purkinje cells and granule cells and by deficits in motor coordination. Regional brain variations of cytochrome oxidase (CO) activity were analyzed to identify those brain regions with abnormal metabolic activity as a secondary consequence of the cerebellar atrophy and to establish the relationship between CO activity and motor deficits. Lurcher mutants had higher CO activity in all three cerebellar deep nuclei than normal littermate controls of the same background strain. Higher CO activity was also found in Lurcher mutants in brain regions directly connected to the cerebellum, such as the lateral vestibular nucleus, the cochlear nucleus, the red nucleus, the ventrolateral thalamus, the dorsal raphe, the interpeduncular nucleus, and the inferior colliculus. By contrast, there was a sharp decrease in CO activity in the inferior olive. As for brain regions not directly connected to the cerebellum, higher CO activity was observed in the trigeminal motor nucleus and the CA1 molecular layer of the hippocampus, which highlights probable transsynaptic alterations as a secondary consequence of cerebellar atrophy. A positive correlation between CO activity in the red nucleus and latencies before falling in two motor-coordination tests indicates that a compensatory increase of metabolic activity in a cerebellar efferent region is associated with improved behavior.  相似文献   

4.
Vulnerability of human cerebellum in two autopsy cases following global brain ischemia was examined histologically by using a specific in situ nick-end labeling method for DNA breaks. In both cases, DNA fragmentation was observed in approximately one-third of the granular cells in cerebellar cortex, whereas Purkinje cells were still alive and no DNA fragmentation was recognized in the nuclei. The present study suggests that some granular cells of cerebellar cortex are more vulnerable to transient ischemia than Purkinje cells and death of granular cells is induced by an apoptotic DNA fragmentation following global brain ischemia.  相似文献   

5.
Angiotensin IV (Val Tyr Ile His Pro Phe), administered centrally, increases memory retrieval and induces c-fos expression in the hippocampus and piriform cortex. Angiotensin IV binds to a high affinity site that is quite distinct in pharmacology and distribution from the angiotensin II AT1 and AT2 receptors and is known as the AT4 receptor. These observations suggest that the AT4 receptor may have multiple central effects. The present study uses in vitro receptor autoradiography, and employs [125I]angiotensin IV to map AT4 receptors in the macaca fascicularis brain. The distribution of the AT4 receptor is remarkable in that its distribution extends throughout several neural systems. Most striking is its localization in motor nuclei and motor associated regions. These include the ventral horn spinal motor neurons, all cranial motor nuclei including the oculomotor, abducens, facial and hypoglossal nuclei, and the dorsal motor nucleus of the vagus. Receptors are also present in the vestibular, reticular and inferior olivary nuclei, the granular layer of the cerebellum, and the Betz cells of the motor cortex. Moderate AT4 receptor density is seen in all cerebellar nuclei, ventral thalamic nuclei and the substantia nigra pars compacta, with lower receptor density observed in the caudate nucleus and putamen. Abundant AT4 receptors are also found in areas associated with cholinergic nuclei and their projections, including the nucleus basalis of Meynert, ventral limb of the diagonal band and the hippocampus, somatic motor nuclei and autonomic preganglionic motor nuclei. AT4 receptors are also observed in sensory regions, with moderate levels in spinal trigeminal, gracile, cuneate and thalamic ventral posterior nuclei, and the somatosensory cortex. The abundance of the AT4 receptor in motor and cholinergic neurons, and to a lesser extent, in sensory neurons, suggests multiple roles for the AT4 receptor in the primate brain.  相似文献   

6.
The expression of cadherin-8 was mapped by in situ hybridization in the embryonic and postnatal mouse central nervous system (CNS). From embryonic day 18 (E18) to postnatal day 6 (P6), cadherin-8 expression is restricted to a subset of developing brain nuclei and cortical areas in all major subdivisions of the CNS. The anlagen of some of the cadherin-8-positive structures also express this molecule at earlier developmental stages (E12.5-E16). The cadherin-8-positive neuroanatomical structures are parts of several functional systems in the brain. In the limbic system, cadherin-8-positive regions are found in the septal region, habenular nuclei, amygdala, interpeduncular nucleus, raphe nuclei, and hippocampus. Cerebral cortex shows expression in several limbic areas at P6. In the basal ganglia and related nuclei, cadherin-8 is expressed by parts of the striatum, globus pallidus, substantia nigra, entopeduncular nucleus, subthalamic nucleus, zona incerta, and pedunculopontine nuclei. A third group of cadherin-8-positive gray matter structures has functional connections with the cerebellum (superior colliculus, anterior pretectal nucleus, red nucleus, nucleus of posterior commissure, inferior olive, pontine, pontine reticular, and vestibular nuclei). The cerebellum itself shows parasagittal stripes of cadherin-8 expression in the Purkinje cell layer. In the hindbrain, cadherin-8 is expressed by several cranial nerve nuclei. Results from this study show that cadherin-8 expression in the embryonic and postnatal mouse brain is restricted to specific developing gray matter structures. These data support the idea that cadherins are a family of molecules whose expression provides a molecular code for the regionalization of the developing vertebrate brain.  相似文献   

7.
8.
There is increasing evidence that, in addition to its major functional role in the regulation of fine motor control, the cerebellum is involved in other important functions, such as sensory-motor learning and memory. Classical conditioning of the eyeblink or nictitating membrane response (and other discrete behavioral responses) is a form of sensory-motor learning that depends crucially upon the cerebellum. Within the cerebellum, however, the relative importance of the cerebellar cortex and the deep cerebellar nuclei in eyeblink conditioning is unclear and disputed. Recent studies employing various mutant mice provide an effective approach to resolving this controversy. Eyeblink conditioning in spontaneous mutant mice deficit in Purkinje cells, the exclusive output neurons of the cerebellar cortex, indicate that both the cerebellar cortex and the interpositus nucleus are important. Furthermore, studies involving gene knockout mice suggest that long-term depression, a process of synaptic plasticity occurring in Purkinje cells, might be involved in eyeblink conditioning.  相似文献   

9.
After we identified several novel cDNAs by screening a neonatal (P1) heterozygous weaver (wv/+) cerebellar cDNA expression library with a rabbit anti-mouse granule cell antiserum, we characterized and sequenced one cDNA, GCAP-8 (standing for granule cell antiserum positive, clone number 8). In this study we examined its expression and cellular distribution in adult cerebellar mutant mice as evidenced by in situ hybridization histochemistry. In wild-type (+/+) brain, strong hybridization signal is seen in cerebellum, hippocampus, substantia nigra (SN), and cerebral cortex; in the cerebellum, hybridization signal is seen in granule cells, Purkinje cells, and in cells of the deep cerebellar nuclei. In the granuloprival weaver (wv/wv) cerebellum, hybridization signal is seen mainly in Purkinje cells. GCAP-8 expression is reduced in wv/wv SN pars compacta, which is known to lose dopamine (DA) neurons. In Purkinje cell degeneration (pcd/pcd) mutants, granule cells show hybridization signal, but overall expression is decreased owing to the absence of Purkinje cells. In reeler (rl/rl) cerebellum, the strongest hybridization signal is found in a thin granule cell layer without the typical foliation pattern, while grain clusters representing ectopic Purkinje cells are observed in the subcortical white matter and the area of the deep cerebellar nuclei. GCAP-8 expression in the reeler hippocampus and cerebral cortex shows a mixing of layers, which is known to be an aspect of the histological phenotype of this mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Converging lines of evidence from rabbits, rats, and humans argue for the crucial involvement of the cerebellum in classical conditioning of the eyeblink/nictitating membrane response in mammals. For example, selective lesions (permanent or reversible) of the cerebellum block both acquisition and retention of eyeblink conditioning. Correspondingly, electrophysiological and brain-imaging studies indicate learning-related plasticity in the cerebellum. The involvement of the cerebellum in eyeblink conditioning is also supported by stimulation studies showing that direct stimulation of the two major afferents to the cerebellum (the mossy fibers emanating from the pontine nucleus and climbing fibers originating from the inferior olive) can substitute for the peripheral conditioned stimulus (CS) and unconditioned stimulus (US), respectively, to yield normal behavioral learning. In the present study, we examined the relative contribution of the cerebellar cortex versus deep nuclei (specifically the interpositus nucleus) in eyeblink learning by using mutant mice deficient of Purkinje cells, the exclusive output neurons of the cerebellar cortex. We report that Purkinje cell degeneration (pcd) mice exhibit a profound impairment in the acquisition of delay eyeblink conditioning in comparison with their wild-type littermates. Nevertheless, the pcd animals did acquire a subnormal level of conditioned eyeblink responses. In contrast, wild-type mice with lesions of the interpositus nucleus were completely unable to learn the conditioned eyeblink response. These results suggest that both cerebellar cortex and deep nuclei are important for normal eyeblink conditioning.  相似文献   

11.
The effect of interleukin-6 (IL-6) on metallothionein-I (MT-I) and MT-III expression in the brain has been studied in transgenic mice expressing IL-6 under the regulatory control of the glial fibrillary acidic protein gene promoter (GFAP-IL6 mice), which develop chronic progressive neurodegenerative disease. In situ hybridization analysis revealed that GFAP-IL6 (G16-low expressor line, and G36-high expressor line) mice had strongly increased MT-I mRNA levels in the cerebellum (Purkinje and granular layers of the cerebellar cortex and basal nuclei) and, to a lesser degree, in thalamus (only G36 line) and hypothalamus, whereas no significant alterations were observed in other brain areas studied. Microautoradiography and immunocytochemistry studies suggest that the MT-I expression is predominantly localized to astrocytes throughout the cerebrum and especially in Bergman glia in the cerebellum. However, a significant expression was also observed in microglia of the GFAP-IL6 mice. MT-III expression was significantly increased in the Purkinje cell layer and basal nuclei of the cerebellum, which was confirmed by Northern blot analysis of poly(A)+ mRNA and by ELISA of the MT-III protein. In contrast, in the G36 but not G16 mice, transgene expression of IL-6 was associated with significantly decreased MT-III RNA levels in the dentate gyrus and CA3 pyramidal neuron layer of the hippocampus and, in both G36 and G16 mice, in the occipital but not frontal cortex and in ependymal cells. Thus, both the widely expressed MT-I isoform and the CNS specific MT-III isoform are significantly affected in a MT isoform- and CNS area-specific manner in the GFAP-IL6 mice, a chronic model of brain damage.  相似文献   

12.
NMDA receptors play key roles in synaptic plasticity and neuronal development, and may be involved in learning, memory, and compensation following injury. A polyclonal antibody that recognizes four of seven splice variants of NMDAR1 was made using a C-terminus peptide (30 amino acid residues). NMDAR1 is the major NMDA receptor subunit, found in most or all NMDA receptor complexes. On immunoblots, this antibody labeled a single major band migrating at M(r) = 120,000. The antibody did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained vibratome sections of rat tissue showed labeling in many neurons in most structures in the brain, as well as in the cervical spinal cord, dorsal root and vestibular ganglia, and in pineal and pituitary glands. Staining was moderate to dense in the olfactory bulb, neocortex, striatum, some thalamic and hypothalamic nuclei, the colliculi, and many reticular, sensory, and motor neurons of the brainstem and spinal cord. The densest stained cells included the pyramidal and hilar neurons of the CA3 region of the hippocampus, Purkinje cells of the cerebellum, supraoptic and magnocellular paraventricular neurons of the hypothalamus, inferior olive, red nucleus, lateral reticular nucleus, peripheral dorsal cochlear nucleus, and motor nuclei of the lower brainstem and spinal cord. Ultrastructural localization of immunostaining was examined in the hippocampus, cerebral cortex, and cerebellar cortex. The major staining was in postsynaptic densities apposed by unstained presynaptic terminals with round or mainly round vesicles, and in associated dendrites. The pattern of staining matched that of previous in situ hybridization but differed somewhat from that of binding studies, implying that multiple types of NMDA receptors exist. Comparison with previous studies of localization of other glutamate receptor types revealed that NMDAR1 may colocalize with these other types in many neurons throughout the nervous system.  相似文献   

13.
The regional distributions of the G protein beta subunits (Gbeta1-beta5) and of the Ggamma3 subunit were examined by immunohistochemical methods in the adult rat brain. In general, the Gbeta and Ggamma3 subunits were widely distributed throughout the brain, with most regions containing several Gbeta subunits within their neuronal networks. The olfactory bulb, neocortex, hippocampus, striatum, thalamus, cerebellum, and brainstem exhibited light to intense Gbeta immunostaining. Negative immunostaining was observed in cortical layer I for Gbeta1 and layer IV for Gbeta4. The hippocampal dentate granular and CA1-CA3 pyramidal cells displayed little or no positive immunostaining for Gbeta2 or Gbeta4. No anti-Gbeta4 immunostaining was observed in the pars compacta of the substantia nigra or in the cerebellar granule cell layer and Purkinje cells. Immunoreactivity for Gbeta1 was absent from the cerebellar molecular layer, and Gbeta2 was not detected in the Purkinje cells. No positive Ggama3 immunoreactivity was observed in the lateral habenula, lateral septal nucleus, or Purkinje cells. Double-fluorescence immunostaining with anti-Ggamma3 antibody and individual anti-Gbeta1-beta5 antibodies displayed regional selectivity with Gbeta1 (cortical layers V-VI) and Gbeta2 (cortical layer I). In conclusion, despite the widespread overlapping distributions of Gbeta1-beta5 with Ggamma3, specific dimeric associations in situ were observed within discrete brain regions.  相似文献   

14.
In young rats, AT2 receptors and AT2 receptor mRNA are discretely localized in neurons of the inferior olive, with highest expression in the medial nucleus. We previously detected AT2 receptor binding, but not AT2 receptor mRNA, in the molecular layer of the cerebellar cortex. To determine whether AT2 receptors are expressed in climbing fiber terminals which arise to the molecular layer from the inferior olive and innervate Purkinje cells, we chemically destroyed olivary neurons of 2-week-old rats by intraperitoneal (i.p.) injection of the neurotoxin 3-acetylpyridine. Lesions of the inferior olive reduced [125I]Sar1-Ang II binding to AT2 receptors and AT2 receptor mRNA levels in this area by 50%, and produced a similar decrease in AT2 receptor binding in the molecular layer of the cerebellar cortex. The extent of binding reduction was similar 3 days and 7 days after the lesion. 3-Acetylpyridine lesions did not change [125I]Sar1-Ang II binding to AT1 receptors in the molecular layer of the cerebellar cortex or AT1 receptor mRNA levels in Purkinje cells. AT2 receptor binding and AT2 receptor mRNA levels in the deep cerebellar nuclei were also not affected by 3-acetylpyridine. Our results support the hypothesis that AT2 receptors are produced by inferior olivary neurons and transported through climbing fibers to the molecular layer of the cerebellar cortex. The high expression of AT2 receptors in the inferior olivary-cerebellar pathway during a crucial time in postnatal development of climbing fiber-Purkinje cell connectivity suggest a role of AT2 receptors in the development of this pathway.  相似文献   

15.
A monoclonal antibody raised against the mouse cerebellar inositol trisphosphate receptor was used to study the immunohistochemical localization of this protein in the human central nervous system. As in the brain of rodents, strong immunoreactivity was found in dendrites, axon and cell bodies of Purkinje cells, as well as in nerve endings in the cerebellar and vestibular nuclei. Cerebellar efferent fibres were the only positive structures demonstrated in the brainstem and no immunostaining could be detected in the spinal cord or dorsal root ganglia. By contrast, numerous immunoreactive neurons were present in several telencephalic and diencephalic structures, including the brain cortex, hippocampus, basal ganglia, basal forebrain, amygdala and thalamus. Immunostaining of these brain neurons was weaker than that found in Purkinje cells and was evident in cell bodies and dendrites. Thus, the human brain contains a molecule cross-reacting with the mouse inositol trisphosphate receptor protein that is expressed in a pattern similar to that found in rodents. These findings can be of great importance for understanding the function of this protein in normal brain and its modifications in neuropathological disorders.  相似文献   

16.
The nucleus of the basal optic root (nBOR) of the accessory optic system is known to be involved in the analysis of the visual consequences of self-motion. Previous studies have shown that the nBOR in pigeons projects bilaterally to the vestibulocerebellum, the inferior olive, the interstitial nucleus of Cajal, and the oculomotor complex and projects unilaterally to the ipsilateral pretectal nucleus lentiformis mesencephali and the contralateral nBOR. By using the anterograde tracer biotinylated dextran amine, we confirmed these projections and found (previously unreported) projections to the nucleus Darkshewitsch, the nucleus ruber, the mesencephalic reticular formation, and the area ventralis of Tsai as well as ipsilateral projections to the central gray, the pontine nuclei, the cerebellar nuclei, the vestibular nuclei, the processus cerebellovestibularis, and the dorsolateral thalamus. In addition to previous studies, which showed a projection to the dorsomedial subdivision of the contralateral oculomotor complex, we found terminal labelling in the ventral and dorsolateral subdivisions. Individual fibers were reconstructed from serial sections, and collaterals to various nuclei were demonstrated. For example, collaterals of fibers projecting to the vestibulocerebellum terminated in the vestibular or cerebellar nuclei; collaterals of fibers to the inferior olive terminated in the pontine nuclei; many individual neurons projected to the interstitial nucleus of Cajal, the nucleus Darkshewitsch, and the central gray and also projected to the nucleus ruber and the mesencephalic reticular formation; collaterals of fibers to the contralateral nucleus of the basal optic root terminated in the mesencephalic reticular formation and/or the area ventralis of Tsai; neurons projecting to the nucleus lentiformis mesencephali also terminated in the dorsolateral thalamus. The consequences of these data for understanding the visual control of eye movements, neck movements, posture, locomotion, and visual perception are discussed.  相似文献   

17.
Localization of neuronal and glial glutamate transporters   总被引:1,自引:0,他引:1  
The cellular and subcellular distributions of the glutamate transporter subtypes EAAC1, GLT-1, and GLAST in the rat CNS were demonstrated using anti-peptide antibodies that recognize the C-terminal domains of each transporter. On immunoblots, the antibodies specifically recognize proteins of 65-73 kDa in total brain homogenates. Immunocytochemistry shows that glutamate transporter subtypes are distributed differentially within neurons and astroglia. EAAC1 is specific for certain neurons, such as large pyramidal cortical neurons and Purkinje cells, but does not appear to be selective for glutamatergic neurons. GLT-1 is localized only to astroglia. GLAST is found in both neurons and astroglia. The regional localizations are unique to each transporter subtype. EAAC1 is highly enriched in the cortex, hippocampus, and caudate-putamen and is confined to pre- and postsynaptic elements. GLT-1 is distributed in astrocytes throughout the brain and spinal cord. GLAST is most abundant in Bergmann glia in the cerebellar molecular layer brain, but is also present in the cortex, hippocampus, and deep cerebellar nuclei.  相似文献   

18.
The distribution of prolactin receptors (PRL-R) in the rat brain was investigated for the first time with the immunohistochemical technique using monoclonal antibodies raised against PRL-R purified from rat liver. Granular immunostaining was observed in neurons and along their dendritic processes and fibers. PRL-R like immunoreactive neurons were found in a number of brain areas. There was a very dense labelling in the cerebral cortex (pyramidal cell layer), septal nuclei, amygdaloid complex as well as in the hypothalamus (suprachiasmatic, supraoptic, paraventricular and dorsomedial nuclei). A dense staining was seen in the substantia nigra, habenula and in the paraventricular thalamic nucleus. Immunostaining was also found in the choroid plexus and in the subcommissural organ. Comparison between the present distribution and that of PRL-like immunoreactivity indicates that the density of PRL-R generally corresponds to that of the fibers. However, in some regions densely stained by PRL-R antibody, there are very few PRL-immunoreactive fibers. These results are suggestive of different modes of action of PRL in the brain.  相似文献   

19.
The in vitro turtle brainstem-cerebellum preparation has been a valuable tool in the study of central motor programs. In the present study, we investigate the anatomical organization of the turtle rubrocerebellar limb premotor network and its sensory connections in vitro by combining the rapid anterograde and retrograde transport of neurobiotin and biocytin with the extended viability of the isolated turtle brainstem-cerebellum. These compounds retrogradely labeled soma, dendrites, and axons, and orthogradely labeled axons and, to a lesser extent, terminals. The chelonian red nucleus receives a dense input from the contralateral lateral cerebellar nucleus and projects heavily to the contralateral spinal cord. Rubral axons sparsely innervate the lateral cerebellar nucleus and project heavily to the lateral reticular nucleus. Lateral reticular axons heavily innervate the lateral cerebellar nucleus before terminating in the pars lateralis of the cerebellar cortex as mossy fibers. These prominent, recurrent loops among the lateral cerebellar nucleus, red nucleus, and lateral reticular nucleus constitute the turtle rubrocerebellar limb premotor network. Sensory inputs to the red nucleus originate in the contralateral dorsal column nuclei, the principal trigeminal nucleus, and the spinothalamic system. These sites project bilaterally to the lateral reticular nucleus. The lateral cerebellar nucleus receives a contralateral input from the dorsal column nuclei. The red nucleus projects sparsely to the dorsal column nuclei. The red nucleus also receives an ipsilateral descending projection from the suprapeduncular nucleus, located in the diencephalon, and an ascending input from the rostral rhombencephalic reticular formation. An ipsilateral descending pathway originating in the red nucleus is likely to be the rubro-olivary tract.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号