首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
主要针对文本情感倾向性分析近年来的研究进行总结。首先介绍主客观文本分析的内容,接着从词语级、短语级、句子级、篇章级,介绍了文本情感倾向分析近些年的一些技术和研究,对其各自的优缺点进行概括。最后对文本情感倾向性分析进行总结,提出对未来研究的想法。  相似文献   

2.
近年来随着计算机、人工智能、心理学等学科交叉领域的不断延伸,情感分析引起了很多研究人员的兴趣。情感分析主要是对主观性文本进行挖掘与分析,从中获取有价值的信息。本文针对中文文本情感分析的研究现状与进展进行总结。首先介绍文本情感分析的内容,并按粒度层次,从词语级、语句级介绍相关的技术,分析了近年来的一些研究进展。接着介绍了中文文本情感分析的方法,最后总结了中文文本情感分析的研究难点与未来的研究方向。  相似文献   

3.
在情感倾向性分析领域,关于情感的收集、分析和聚合等技术一直是近年来的关注热点。该领域的相关发展带动了各个子任务及其相关研究的大力发展。本文主要综述了面向情感的信息系统中使用的情感分析相关的需求,技术,应用以及评测方法等。在情报分析方面,存在许多不同于传统的主题分析的新需求,这就是对情感分析技术的强烈需求。接着,介绍了词级、句子级、段落篇章级等不同层次的情感分析技术。然后,还综述了采用情感分析技术的各种典型应用。最后,为了工作开展的便利,讨论了情感分析领域的词库资源、样本集资源、评测方法及重要会议等。  相似文献   

4.
文本倾向性识别可以广泛应用于用户产品评论、舆情分析等。针对文本倾向性识别往往需要借助外部资源的问题,提出一种基于情感描述项及改进的互信息计算相结合的方法,通过句法分析提取出若干可以获得文本情感描述项的匹配模式,根据模式匹配及计算情感描述项的互信息作为特征值,训练分类模型得出文本的褒贬性。通过对酒店、手机语料集实验后的结果进行分析,该方法具有良好的效果。  相似文献   

5.
在微博情感倾向性分析中,一种典型分析方法是先对微博进行主客观分类,再对判定为主观的微博进行褒贬分类,但其问题在于主客观分类错误将直接传导到褒贬分类。针对这一问题,本文提出了一个主客观分类和褒贬分类融合的评估情感倾向性强度的模型。首先使用改进的逻辑回归模型构建主客观分类模型,并结合情感词典构建褒贬分类模型;然后,将二者融合,构建情感倾向性强度模型来选出具有较强情感的微博;最后应用褒贬分类模型判定情感倾向性。该方法在第六届中文倾向性分析评测(COAE2014)的微博观点句识别任务中获得了主要指标Micro_F1值和Macro_F1值的第二名。  相似文献   

6.
随着互联网的发展,社交网络、电子商务等已经成为人们关注的焦点,对社交网络的文本进行情感倾向性分析和挖掘变得越来越重要。该文针对网络上的中文文本,提出一种基于文本纹理特征的情感倾向性分类方法。通过测试多种文本纹理特征对文本情感倾向性的影响,成功将文本纹理特征融入情感分类中。通过计算各类特征与文本的情感倾向性的相关度,对特征进行降维。相对于基于词频的情感倾向性分类方法,查准率平均提高了10%左右。  相似文献   

7.
以文本颗粒度为视角,从情感词抽取、语料库和情感词典构建、评价对象与意见持有者分析、篇章级情感分析、实际应用五个方面对文本情感分析文献进行了梳理,并做出必要评述。指出当前情感分析系统的准确率普遍不高,进一步研究的重点在于:自然语言处理的研究成果在文本情感倾向分析中更广泛和贴切的应用;选取文本情感倾向分类的特征和方法;利用现有语言工具和相关资源,规范、快速地构造语言工具和相关资源并应用。  相似文献   

8.
情感Ontology构建与文本倾向性分析   总被引:1,自引:2,他引:1       下载免费PDF全文
对文本倾向性分析方法进行了研究,并提出了一种基于情感Ontology的分析方法。首先基于《知网》构建情感Ontology,然后基于情感Ontology抽取文本倾向性分析的特征词汇并判断其情感倾向性,最后根据抽取的特征词汇对整篇文本的倾向性进行分析。实验结果表明,以实验语料中的所有词汇作为特征词汇,在Baseline的基础上,利用情感Ontology抽取特征词汇的文本倾向性分析方法可以使准确率达到86.76%。  相似文献   

9.
中文文本情感分析研究综述   总被引:3,自引:0,他引:3  
对中文文本情感分析的研究进行了综述。将情感分类划分为信息抽取和情感识别两类任务,并分别介绍了各自的研究进展;总结了情感分析的应用现状,最后提出了存在的问题及不足。  相似文献   

10.
在研究文本倾向性识别方法的基础上,分别实现基于文本分类、基于语义规则模式和基于情感词的倾向性分析算法.研究情感本体构建和基于HowNet与主题领域语料的情感概念选择方法,两者结合能提高情感本体中概念的全面性和领域针对性.利用情感本体抽取特征词并判断其情感倾向度,结合句法规则及程度副词影响,用特征情感倾向度作为特征权重,采用机器学习的方法对主题网络舆情web文本进行倾向性分析.实验表明,其分析结果有更高的准确率和召回率,实现方案的普遍性和稳定性值得进一步研究.  相似文献   

11.
在文本的情感倾向性研究中缺乏对多种复杂句式的有效分析,而复杂句式中多种情感共现的特点使得传统的情感分类器对复杂句式的情感分析效率不高,所以提出一种新的可以对复杂句式进行有效情感分析的情感分类模型。该模型充分分析了汉语中复杂句式的结构特点,通过已有资源构建中文情感词典、关联词表、否定词表,并提出了一种复杂句式模型来匹配各种复杂句式。最后将该复杂句模与朴素贝叶斯分类器相结合,得到新的针对复杂句式的情感分类模型。在实验中,新的情感分类模型在准确率、召回率、F值上都比传统的情感分类器有了明显的提高。实验证明该模型能更好的分析各种复杂句式的情感。  相似文献   

12.
中文文本情感分析综述   总被引:5,自引:0,他引:5  
魏韡  向阳  陈千 《计算机应用》2011,31(12):3321-3323
由于主观性文本有很多应用价值,情感分析近年来引起了很多研究人员的兴趣.情感分析是对主观性文本进行挖掘与分析,获取有用的知识和信息.针对中文文本情感分析的研究现状与进展进行总结.首先按粒度层次,从词语级、语句级、篇章级三个不同粒度层次细致地介绍相关的技术,再按文本的类型,分析了产品评论和新闻评论的研究进展.接着介绍了中文...  相似文献   

13.
文本情感是信息挖掘的一个新兴领域,近年受到管理学等相关领域的广泛关注。目前,文本情感分析使用的方法主要有情感词典方法和机器学习方法。由于文本情感分析的结果对优化政府、企业以及消费者决策具有重大意义,以文本情感分析的方法为视角,对情感词典的方法、有监督的机器学习方法和弱监督的深度学习方法以及其他方法的相关文献进行了梳理并做出评述。此外,指出虽然文本情感分析领域的学者基于情感词典和有监督的机器学习方法已提出许多情感分析模型,但准确率和效率普遍不高,进一步的研究重点应在于使用深度学习的方法处理文本情感,并提出未来的研究方向。  相似文献   

14.
在文本的情感倾向性研究中缺乏对多种情感共现的转折句式的有效分析,为此提出一种专门对转折句式进行有效情感倾向性分析的方法。充分分析汉语中转折句式的结构特点,通过已有资源构建中文情感词典、转折词表、否定词表,依据转折句式中转折词、否定词、情感词的组合规律提出用于进行情感分析的启发式规则。在公开语料库的实验中,该方法能更好地对转折句式进行情感倾向性分析,将此规则融入到传统的朴素贝叶斯情感分类模型后,能获得更高的情感分析精度。  相似文献   

15.
语篇倾向性分析是倾向性分析的较高层次领域。根据文本篇幅和结构可以将语篇分为短文本和长文本。该文以网络商品评论作为样本研究短文本倾向性分析的特点和策略。根据倾向极性在文中的决定性因素的不同表现,短文本可以分为含显性归总句、含隐性归总句、含特征词以及一般文本四类,针对不同类别文本采用不同的处理策略。在此基础上,运用词典、规则的方法构建了语篇倾向性分析系统CUCsas,该方法在第四届中文倾向性分析评测(COAE2012)中取得了较好成绩。  相似文献   

16.
近年来,卷积神经网络(convolutional neural network, CNN)和循环神经网络(recurrent neural network, RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit, BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果.  相似文献   

17.
Aiming at the problem of manual annotation in the text sentiment analysis, a new method based on five tuple of appraisal expression is proposed. This  method just needs appropriate sentiment dictionary. The sentiment tendencies of comments are analyzed without lots of markup work. Through the combination of unsupervised and supervised learning methods to construct the evaluation thesaurus and evaluation object list; the extraction of appraisal expression is based on these lists, using linear chain conditional random fields model, which is in the chain of sentiment words. Finally, evaluation objects are divided into four categories and emotional words are divided into five types according to the relationship between semantic collocation, combined with the influence of sentence pattern, negative word and degree word on the sentiment analysis, a method of calculating the sentiment tendency of the text is put forward. Compared with other methods, this method based on the appraisal expression has obtained better F value, and it has a certain cross domain.  相似文献   

18.
针对消费短文本评论中的情感倾向性分类问题,提出了一种BSP-CNN混合神经网络模型。模型先使用双向简单循环单元(BiSRU)对数据进行特征表示,再使用逐点卷积神经网络(P-CNN)进一步学习语义特征,并输出情感倾向性分类结果。实验结果表明,与传统的长短期记忆神经网络(LSTM)和卷积神经网络(CNN)相比,BSP-CNN混合神经网络模型有效简化了计算,缩短了运行时间,并且在不同大小和不同文本长度的数据集上均能取得更高的F1值。  相似文献   

19.
基于语义理解的文本情感分类方法研究   总被引:1,自引:1,他引:1  
闻彬  何婷婷  罗乐  宋乐  王倩 《计算机科学》2010,37(6):261-264
文本情感分类方法在信息过滤、信息安全、信息推荐中都有广泛的应用.提出一种基于语义理解的文本情感分类方法,在情感词识别中引入了情感义原,通过赋予概念情感语义,重新定义概念的情感相似度,得到词语情感语义值.分析语义层副词的出现规律及其对文本倾向性判定的影响,实现了基于语义理解的文本情感分类.实验表明,该方法能有效地判定文本情感倾向性.  相似文献   

20.
社交媒体上短文本情感倾向性分析作为情感分析的一个重要分支,受到越来越多研究人员的关注。为了改善短文本特定目标情感分类准确率,提出了词性注意力机制和LSTM相结合的网络模型PAT-LSTM。将文本和特定目标映射为一定阈值范围内的向量,同时用词性标注处理句子中的每个词,文本向量、词性标注向量和特定目标向量作为模型的输入。PAT-LSTM可以充分挖掘句子中的情感目标词和情感极性词之间的关系,不需要对句子进行句法分析,且不依赖情感词典等外部知识。在SemEval2014-Task4数据集上的实验结果表明,在基于注意力机制的情感分类问题上,PAT-LSTM比其他模型具有更高的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号