首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, austempered ductile iron has been evaluated as an alternative to steel for perforated plates applied in the ballistic protection of military vehicles. The austempering was performed in lower and higher austempering ranges in order to obtain two types of austempered ductile iron: one with a higher strength, and the other with a higher ductility. Perforated plates having two different thicknesses of 7 and 9 mm were mounted in front of basic armour and 12.7 × 99 mm armour – piercing incendiary ammunition was fired from 100 m. It was shown that the austempered ductile iron material austempered at a lower temperature has superior ballistic resistance, providing a full (five out of five armour – piercing incendiary shots stopped) ballistic resistance if combined with 13 mm basic armour plate. The thicker austempered ductile iron perforated plate provides more significant penetrating core damage, and therefore, lower basic plate damage. On the other hand, the thinner austempered ductile iron material perforated plate can be considered optimal due to its lower weight and higher mass effectiveness. In austempered ductile iron material austempered at a higher temperature, besides a lower hardness, bulk retained low-carbon metastable austenite transforms into martensite through strain induced mechanism, causing a partial brittle fracture.  相似文献   

2.
Silicon carbide square tiles of different areal geometries and manufactured via two different processing routes have been bonded to polycarbonate layers to evaluate their ballistic performance. Four ceramic tile sizes were tested: 85 mm, 60 mm, 50 mm and 33 mm. In each case the residual depth-of-penetration into a polycarbonate semi-infinite backing was recorded. To elucidate the penetration and failure mechanisms, a computational model using the JH-1 ceramic model [Holmquist TJ, Johnson GR. Response of silicon carbide to high velocity impact. J Appl Phys 2002;91:5858–66] of the projectile used in the experimental study penetrating into a silicon carbide-faced polycarbonate was implemented in the hydrocode AUTODYN-2D. This paper shows that there is a critical dimension of tile that should be used in a silicon carbide-based ceramic-faced mosaic armour system design to ensure optimum system performance when each tile is struck centrally.  相似文献   

3.
A comprehensive study of the newly developed near-β titanium alloy Ti684 has been carried out to determine the influence of the dynamic strength, dynamic hardness and critical failure strain on the ballistic impact properties. Two heat treatments of Ti684, namely β solution-treatment and α + β solution-treatment followed by aging, were carried out and the results were compared with Ti–6Al–4V. Ballistic impact tests were conducted on 7 mm thick front plates with a 20 mm thick A3 steel backing plate, using 7.62 mm armor piercing projectiles. The ballistic performance was evaluated by measuring the residual depth of penetration (DOP) in the A3 steel backing plates. It was found that the DOP values did not show obvious corresponding relation with both dynamic strength and dynamic hardness. The 800 °C solution +550 °C aged Ti684, which had the maximal dynamic strength, presented the worst ballistic performance, with a maximum DOP of 12.5 mm. In addition, the Ti–6Al–4V plate in the study with highest dynamic hardness did not show the best ballistic performance, having a DOP of 11.86 mm. However, as the critical failure strain increased, the DOP of the A3 steel backings were observed to decrease. This relationship was revealed from post ballistic microstructural observations.  相似文献   

4.
The investigation describes and analyses the ballistic impact behavior of a high strength armour steel and Al-7017 alloy under 7.62 mm deformable projectiles at a velocity of 830 ± 10 m/s at normal angle of attack. The high strength armour steel is subjected to two different heat treatments to see the effect of different mechanical properties on the ballistic behavior. The ballistic result of the Al-7017 alloy is compared with that of the steel. Some observations relating to the adiabatic shear bands formation have also been presented. Experimental results showed that among the investigated materials, the best ballistic performance was attained with the armour steel at 910 °C austenitisation followed by 200 °C tempering condition.  相似文献   

5.
This paper presents the effect of test parameters such as Impact velocity, configuration and target thickness on ballistic performance of weldox steel plates against 7.62 mm APM2 projectile using Taguchi method. Trials were planned using an L 18 orthogonal array with 18 combinations of test variables to assess the influence of various factors. Numerical simulations have been carried out using Ansys Autodyn code with the above three process variables. Failure mechanisms of target plates of various single and multi-layered configurations were also discussed. Most portion of the kinetic energy of the projectile was expended in plastic deformation of the target material before perforation due to better bending stiffness of the target plate. Results showed that target thickness and impact velocity were the significant variables on residual velocity. Layer configuration was found to be insignificant relating to ballistic performance. Significant interaction is observed between impact velocity and target thickness from interaction plots. Simulated and experimental results showed good agreement with each other.  相似文献   

6.
The effect of confinement on the failure mechanisms in dense alumina tiles during the penetration of a projectile was investigated and the role played by lateral mechanical confinement in inhibiting some failure modes was examined.Alumina tiles were placed in a confinement frame which simply and accurately allows high biaxial compressive pre-stresses. The confinement frame is a modular system which enables the application of various boundary conditions on the impacted tile to be generated. Tile samples were supported by semi-infinite support blocks made of steel or aluminum, and were confined by steel wedges.In the tests carried out under ballistic penetration conditions, the confined tiles were impacted by 0.3 cal. NATO AP (armor piercing) projectiles. These contained a hardened steel cone-shaped core with a sharp tip. In this investigation, the effect of reflected stress waves was small or even negligible, since the tile/support impedance mismatch was low, so that quasi-static failure mechanisms predominated. The effect of tile thickness on the damage mechanisms was also examined. Under the described test conditions, the major failure modes were radial cracks, cone crack, and fragmentation of the cone. Confined tiles exhibited reduced damage; damage in the form of radial cracks was reduced, and cone crack and fragmentation of the cone were inhibited. Based on the theory of a plate on an elastic foundation, the quasi-static loads that initiate the radial cracks were formulated. This model assists in understanding the initial damage mechanism.  相似文献   

7.
A series of terminal ballistics experiments and 2-D simulations, with small scale tungsten alloy penetrators, was performed in order to quantify the ballistic efficiency of confined ceramic tiles. The data includes both depth of penetration (DOP), into thick steel backing and X-ray shadowgraphs during the penetration process. Impact velocities ranged between 1.25 to 3.0 km/s. The size of the tiles varied in order to check their performance as a function of thickness and lateral dimensions. We found that the differential ballistic efficiency of alumina tiles is practically independent on impact velocity and tile thickness, within the ranges of velocity and thicknesses, investigated here. A detailed simulation study, using the Eulerian processor of the PISCES 2-D ELK code, was performed in order to better understand the interaction between long-rods and ceramic tiles, and particularly, to adjust a proper failure criterion to the tiles. We found that a simple version of the Johnson-Holmquist model, with a single parameter, is fairly adequate to account for most of the data. These include: lateral confinement, tile thickness and impact velocity influence on the penetration depth. We used the code to further investigate the influence of lateral dimensions on tile performance.  相似文献   

8.
This paper presents a numerical investigation of the ballistic performance of monolithic, double- and triple-layered metallic plates made of either steel or aluminium or a combination of these materials, impacted by a 7.62-mm APM2 projectile in the velocity range of 775–950 m/s. Numerical models were developed using the explicit finite element code LS-DYNA. It was found that monolithic plates have a better ballistic performance than that of multi-layered plates made of the same material. This effect diminishes with impact velocity. It was also found that double-layered plates with a thin front plate of aluminium and thick back steel plate exhibit greater resistance than multi-layered steel plates with similar areal density. These predictions indicate that multi-layered targets using different metallic materials should be investigated for improved ballistic performance and weight-savings.  相似文献   

9.
In this research, quasi-static penetration and ballistic properties of non-woven kenaf fibres/Kevlar epoxy hybrid laminates with thicknesses ranging from 3.1 mm to 10.8 mm by hard projectile at normal incidence have been experimentally investigated. Hybrid composites were fabricated by hand lay-up technique in a mould and cured at room temperature for 24 h by static load. Hybrid composites consist of Kevlar layers and non-woven kenaf layers at three different configurations, i.e. kenaf at the innermost layers, outermost layers and at the alternating layers. Kevlar/epoxy and kenaf/epoxy composites were also fabricated for comparison purpose. Quasi-static experiments were conducted using a tensile testing machine at the speed of 1.27 mm/min and 2.54 mm/min. Ballistic tests were conducted using 9 mm full metal jacket bullet using a powder gun at speeds varying from 172 to 339 m/s, with the initial and a residual velocity of the projectiles is measured. The tested sample was carefully examined with respect to failure modes. Results showed the effect of hybridization in term of force–displacement curves, energy dissipation and damage mechanisms for quasi-static test. Maximum force to initiate penetration is higher in hybrid composites compared to kenaf/epoxy and Kevlar/epoxy composites. Hybridization of kenaf–Kevlar resulted in a positive effect in terms of energy absorbed (penetration) and maximum load. In the case of ballistic tests, hybrid composites recorded lower ballistic limit (V50) and energy absorption than the Kevlar/epoxy composite. The V50 of hybrid composites with kenaf at the outermost layers is superior to other hybrid composites. These finding inspired further exploration of hybrid composite for ballistic armour spall-liner application.  相似文献   

10.
Full width through-thickness cracks were introduced into the ceramic tiles of ceramic faced composite armour panels. The ballistic limit velocity for projectiles striking directly on the crack was measured and compared with undamaged panels. The effect of the cracks was to lower the V50 ballistic limit velocity to 744 m s−1 compared to 764 m s−1 for undamaged panels, a drop of only 3%. This means that the presence of cracks in a ceramic armour tile should not be sufficient reason to require replacement of the panel, a fact of some importance given the likehood of damage in the military environment. It is proposed that the small value of the reduction in performance is observed because the cracked ceramic is still effectively confined by the presence of a well bonded composite backing and a frontal spall shield. The presence of a large crack at the impact point has little effect as the ceramic in this area is anyway extensively comminuted ahead of the projectile upon impact. The backing and spall shield conserve the structural integrity of the panel and this acts to contain the radial stresses generated by the impact event. The performance of the armour system has also been assessed by measurement of the V0 ballistic limit velocity determined from residual momentum of penetrating projectiles and armour fragments. The standard panels showed a V0 of 743 m s−1 compared to 699 ms−1 for the pre-cracked panels.  相似文献   

11.
High velocity impact performance of glass reinforced polyester (GRP) resin composite plates with different type of reinforcement was investigated. The projectile used was a sharp tipped (30°) conical head with total length of 30 mm and shank length of 15 mm with weight of 9.74 g. Five different types of E-glass fiber reinforcement were used, including chopped strand mat (CSM), plain weave, satin weave, unidirectional and cross-ply unidirectional fiber reinforcements. A smooth barrel gas gun was used to conduct high velocity impact tests in the velocity range of 80–160 m/s. Composite plates with size of 15 cm × 15 cm were prepared in 3 and 6 mm thickness. Results showed higher ballistic limit velocity (velocity at which samples fully penetrated the target plates with zero residual velocity) for 3 mm GRP plates with cross-ply unidirectional reinforcement followed by unidirectional reinforcement and plain weave, the plates with satin weave and CSM reinforcements were almost in same level. The thicker specimens (6 mm), plates with plain weave reinforcement showed better ballistic performance towards sharp tipped conical projectile impact, followed by cross-ply unidirectional, satin weave, unidirectional and CSM reinforced plates. Experimentally determined ballistic limit velocity for all specimens correlate well with estimated ballistic limit values obtained in full perforation tests. Damage assessment conducted on all specimens indicated fiber tension and shear failure for thin-walled and sever delamination for the thick-walled specimens as the dominant failure modes.  相似文献   

12.
A combined numerical and experimental study for the analysis of ceramic/metal composite armour system against 40.7 g steel projectiles has been performed. The ballistic performance of the add-on lightweight armours was examined by varying the thickness of tiles, while maintaining equal areal density of the system. A numerical study using smoothed particle hydrodynamics scheme is promising since the major distinguishing features of composite armour systems such as, projectile erosion, crack propagation, ceramic conoid formation and failure of backing plate, are successfully captured. Simulation results for ballistic limits appear to match fairly well with the test values and reveal an optimum value of the front plate to back plate thickness ratio.  相似文献   

13.
Laminated ballistic composite panels are an important part of hard-plate protective body armour and may be subjected to a wide variety of impact conditions depending on the projectile, impact velocity and armour construction, to name a few.  相似文献   

14.
The use of aluminium alloys in lightweight protective structures is increasing. Even so, the number of experimental and computational investigations that give detailed information on such problems is limited. In an earlier paper by some of the authors, perforation experiments were performed with 15–30 mm thick AA5083-H116 aluminium plates and 20 mm diameter, 98 mm long, HRC 53 conical-nose hardened steel projectiles. In all tests, initial and residual velocities of the projectile were measured and the ballistic limit velocity of each target plate was determined. In the present paper, an analytical perforation model based on the cylindrical cavity-expansion theory has been reformulated and used to calculate the ballistic perforation resistance of the aluminium plates. In addition, non-linear finite element simulations have been carried out. The target material was modeled with the Johnson–Cook constitutive relation using 2D axisymmetric elements with adaptive rezoning. To allow ductile hole growth, a pin-hole was introduced in the target. The analytical and numerical results have been compared to the experimental findings, and good agreement was in general obtained. A parametric study was also carried out to identify the importance of the different terms of the Johnson–Cook constitutive relation on the perforation resistance of the target. The results indicate that thermal softening cannot be neglected, so an alternative procedure for identification of the material constants in the power-law constitutive relation used in the cavity-expansion theory has been proposed.  相似文献   

15.
The ballistic performance of 17 penetrator materials, representing 5 distinct steel alloys treated to various hardnesses along with one tungsten alloy, has been investigated. Residual lengths and velocities, as well as the ballistic limit velocities, were determined experimentally for each of the alloy types for length-to-diameter (L/D) ratio 10 projectiles against finite-thick armor steel targets. The target thickness normalized by the projectile diameter (T/D) was 3.55. For some of the projectile types, a harder target, with the same thickness, was also used. It was found that the ballistic limit velocity decreases significantly when the projectile hardness exceeds that of the target. Numerical simulations are used to investigate some of the observed trends. It is shown that the residual projectile length is sensitive to projectile hardness; the numerical simulations reproduce this experimental observation. However, the observed trend in residual velocity as a function of projectile hardness is not reproduced in the numerical simulations unless a material model is invoked. It is assumed that the plastic work per unit volume is approximately a constant, that is, there is a trade off between strength and ductility. Using this model, the numerical simulations reproduce the experimentally observed trend.  相似文献   

16.
This paper presents experimental and numerical investigations on ballistic impact behaviors of GLARE 5 fiber-metal laminated (FML) beams of various thicknesses. A high-speed camera was used to measure impact and residual/rebound velocities and also to assess damage evolution in the FMLs. The incident projectile impact velocity versus the residual velocity (VIVR) was plotted and numerically fitted according to the classical Lambert–Jonas equation for the determination of ballistic limit velocity, V50. The results showed that the V50 varied in a parabolic trend with respect to the metal volume fraction (MVF) and specimen thickness. The interfacial debonding as well as bending and stretching in aluminum layers played the significant roles in dissipating the impact energy in the GLARE 5 FML beams. The 3D finite element (FE) code, LS-DYNA, was used to model and validate the experimentally obtained results. Good agreement between experimental and numerical results was achieved. It was found that for a given specimen configuration, by increasing the projectile incident velocity up to its V50, the maximum contact force increased. By further increasing the projectile velocity above its V50, the maximum contact force was relatively invariant with respect to an increase in the projectile incident velocity.  相似文献   

17.
This paper concerns energy absorption in thin (0.4 mm) steel plates during perforation by spherical projectiles of hardened steel, at impact velocities between 200 and 600 m s−1. Absorbed energies have been obtained from measured incident and emergent projectile velocities. These tests were simulated using ABAQUS/Explicit, using the Johnson and Cook plasticity model. A strain rate-dependent, critical plastic strain fracture criterion was employed to model fracture. Good agreement is obtained between simulations and experiment and the model successfully captures the transitions in failure mode as projectile velocity increases. At velocities close to the ballistic limit, the plates fail by dishing and discing. As the incident velocity is increased, there are two transitions in failure mode, firstly to shear plugging and secondly to fragmentation and petalling. The simulations also show that, during the latter mode of failure, the kinetic energy of ejected debris is significant, and failure to include this contribution in the energy balance leads to a substantial over-estimate of the energy absorbed within the sheet. Information is also presented relating to the strain rates at which plastic deformation occurs within the sample under different conditions. These range up to about 105 s−1, with the corresponding strain rate hardening effect being quite substantial (factor of 2–3 increase in stress).  相似文献   

18.
The interest regarding use of aluminium alloys in lightweight protective structures is today increasing. Even so, the number of experimental and computational investigations giving detailed information on such problems is still rather limited. In this paper, perforation experiments have been performed on AA5083-H116 aluminium plates with thicknesses varying between 15 and 30 mm impacted by 20 mm diameter, 98 mm long, HRC 53 conical-nose hardened steel projectiles. In all tests, initial and residual velocities of the projectile were measured and a digital high-speed camera system was used to photograph the penetration and perforation process. Based on these measurements, impact versus residual velocity curves of the target plates were constructed and the ballistic limit velocity of each target was obtained. An analytical perforation model from the open literature is then used to predict the ballistic limit velocity, and excellent agreement with the experimental data is found. The experimental results are finally compared to similar experiments on steel and concrete targets, and the capacity of the different materials is evaluated in relation to total weight.  相似文献   

19.
This paper discusses on the penetration of high velocity projectiles through aluminium–polyurea composite layered plate systems. An analytical model has been proposed to predict the residual velocity of aluminium–polyurea composite plates, and validated with both experimental and numerical investigations. Full metal jacket (FMJ) projectiles (5.56 mm × 45 mm), corresponding to NATO standard SS109, were fired at the aluminium–polyurea composite layered plate systems from a distance of 10.0 m at a fixed velocity of 945 m/s. Four different composite plate configurations were used with thicknesses varying from 16 to 34 mm. Each configuration consisted of six specimens. Residual velocities for each individual test were recorded. Numerical simulations of the penetration process have been performed using advanced finite element code LS-DYNA®. The well-established Johnson–Cook and Mooney–Rivlin material models were used to represent the stress–strain behaviour of aluminium and polyurea in the numerical analysis. The analytical and numerical models provided good approximations for the residual velocities measured during the experimental tests. Polyurea layers contributed positively towards the reduction of residual velocity of the projectile in composite plate systems. In addition, ballistic limit curves for different composite systems have been established based on the validated models. As the results showed that polyurea contributes positively towards the reduction of residual velocity of projectiles, the findings of this study can be effectively used for the similar applications in future armour industry.  相似文献   

20.
Based on the mode of ductile hole enlargement, the present paper compares the models of a rigid sharp-nosed projectile perforating the ductile metallic target plate, given by Chen and Li [1] and Forrestal and Warren [2], respectively. It indicates that the formulae of ballistic limit and residual velocity of these two perforation models are consistent in form but with different applicable range, which due to them employing the spherical cavity expansion theory and cylindrical cavity expansion theory, alternately. Further analyses are conducted to discuss the effects of target material and plate thickness on the terminal ballistic performance with referring the experimental results of aluminum alloy and Weldox E steel plates. It is confirmed that the perforation mechanisms may transform with increasing the plate thickness and the strength of target material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号