首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As explosive blasts continue to cause casualties in both civil and military environments, there is a need to identify the dynamic interaction of blast loading with structures, to know the shock mitigating mechanisms and, most importantly, to identify the mechanisms of blast trauma. This paper examines the air-blast simulation using Arbitrary Lagrangian Eulerian (ALE) multi-material formulation. It will explain how the fluid–structure interaction (FSI) can be simulated using a coupling algorithm for the treatment of the fluid as a moving media by a moving mesh using ALE formulation and how the structure is treated on a deformable mesh using a Lagrangian formulation. To validate the numerical approach, as well as to prove its ability to simulate complicated scenarios, comparison of three distinct blast scenarios, i.e., blast from C-4 and TNT in open space and blast on a circular steel plate, with the experimental data was performed. The predicted numerical results match very well with those of experiments. This computational approach is able to accurately predict the relevant aspects of the blast–structure interaction problem, including the blast wave propagation in the medium and the response of the structure to blast loading.  相似文献   

2.
The damage prediction of concrete gravity dams under blast loads has gained importance in recent years due to the great number of accidental events and terrorist bombing attacks that affected engineering safety. It has long been known that an underwater explosion can cause significantly more damage to the targets in water than the same amount of explosive in air. While the physical processes during an underwater explosion and the subsequent response of structures are extremely complex, which involve lots of complex issues such as the explosion, shock wave propagation, shock wave-structure interaction and structural response. Hence a sophisticated numerical model for the loading and material responses would be required to enable more realistic reproduction of the underlying physical processes. In this paper, a fully coupled numerical approach with combined Lagrangian and Eulerian methods, incorporating the explosion processes, is performed. The RHT (Riedel–Hiermaier–Thoma) model including the strain rate effect is employed to model the concrete material behavior subjected to blast loading. Detailed numerical simulation and analysis of a typical concrete gravity dam subjected to underwater explosion are presented in this study. In terms of different TNT charge weights, the structural response and damage characteristics of the dam at different standoff distances are investigated. Based on the numerical results, critical curves related to different damage levels are derived.  相似文献   

3.
Numerical prediction of concrete slab response to blast loading   总被引:1,自引:0,他引:1  
In this paper, a dynamic plastic damage model for concrete material has been employed to estimate responses of both an ordinary reinforced concrete slab and a high strength steel fibre concrete slab subjected to blast loading. In the concrete material model, the strength envelope is a damage-based modified piece-wise Drucker–Prager model; the strain rate effect on tension and compression are considered separately; the damage variable is based on Mazars’ damage model, which is a combination of tensile and compressive damage. The equation of state (EOS) is also a combination of the porous and solid EOS of concrete with different forms for tension and compression states. The interaction between the blast wave and the concrete slab is considered in the 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in a 2D simulation before the blast wave reaches the concrete slab, then the results obtained from the 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. The numerical results of the concrete slab response are compared with the explosive tests carried out in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia. Repetitive applications of blast loading on slabs are also simulated and the results compared with test data.  相似文献   

4.
The main objective of this paper is the analysis of the behaviour of concrete pavements subjected to blast loads produced by the detonation of high explosive charges above them. This subject is of particular interest in terrorist attacks in cities, since important conclusions about the location and magnitude of the explosive charge can be drawn from simple observation of the pavement damage. Experimental results for a concrete slab lying on the ground and subjected to blast loads are presented. The slab was lying on the ground and was tested with different amounts of explosive suspended in air over it. Numerical results are compared with those obtained with a simplified plastic limit analysis and those obtained with two types of numerical simulations performed with two different codes. Some conclusions about the effect of the blast load on the concrete slab and about different tools available for the analysis of this type of problem are stated in the paper.  相似文献   

5.
爆炸流场与玻璃幕墙动力响应的仿真计算方法   总被引:3,自引:2,他引:1       下载免费PDF全文
采用ALE有限元法进行了爆炸流场与复杂玻璃幕墙结构相互作用的三维动态仿真。针对数值仿真过程中计算效率过低的问题,根据显式有限元和距离爆炸冲击波试验问题的计算特点,利用高性能计算平台设计并实现了爆炸冲击波与玻璃幕墙动力响应的分步流固耦合仿真计算方法。研究了爆炸冲击波作用下幕墙玻璃的动力响应情况,通过与试验结果相比较,证实了该仿真方法的可行性,为玻璃幕墙结构的抗爆设计与改进提供了参考依据。  相似文献   

6.
Terrorist attacks using improvised explosive devices on reinforced concrete buildings generate a rapid release of energy in the form of shock waves. Therefore, analyzing the damage mode and damage mechanism of structures for different blast loadings is important. The current study investigates the behavior of one-way square reinforced concrete (RC) slabs subjected to a blast load through experiments and numerical simulations. The experiments are conducted using four 1000 mm × 1000 mm × 40 mm slabs under close-in blast loading. The blast loads are generated by the detonations of 0.2–0.55 kg trinitrotoluene explosive located at a 0.4 m standoff above the slabs. Different damage levels and modes are observed. Numerical simulation studies of the concrete damage under various blast loadings are also conducted. A three-dimensional solid model, including explosive, air, and RC slab with separated concrete and reinforcing bars, is created to simulate the experiments. The sophisticated concrete and reinforcing bar material models, considering the strain rate effects and the appropriate coupling at the air–solid interface, are applied to simulate the dynamic response of RC slab. The erosion technique is adopted to simulate the damage process. Comparison of the numerical results with experimental data shows a favorable agreement. Based on the experimental and numerical results, the damage criteria are established for different levels of damage. With the increase of the explosive charge, the failure mode of RC slab is shown to gradually change from overall flexure to localized punching failure.  相似文献   

7.
含铝炸药能改善能量的输出结构,增强爆轰产物的做功能力,将其应用于水下爆炸,能显著提高水中兵器的爆炸威力和毁伤能力。基于电测法采用PVDF压力传感器开展含铝炸药RL-F和TNT近场水下爆炸冲击波实验,并采用耦合欧拉-拉格朗日(CEL)法对其进行模拟;通过将仿真结果与实验值及经验值对比,结果表明采用合理的边界条件、计算参数和有限元模型,CEL方法能准确地模拟含铝炸药和TNT近场水下爆炸冲击波的传播过程;含铝炸药近场水下爆炸冲击波压力衰减速率相对于TNT较缓慢。在验证数值模型合理性的基础上,将数值结果拟合得到TNT近场水下爆炸冲击波峰值压力在6倍装药半径内以及含铝炸药峰值压力在一定比例距离范围内的近似回归公式。  相似文献   

8.
This work is in keeping with a research activity led by the Cemagref aiming to optimise systems of air distribution in refrigerated vehicles in order to decrease the temperature scattering within the loading. The goal of this article is the development of a simplified model of air flows inside a vehicle loaded with pallets, while assimilating them to those of an hydraulic network. The experiments have been performed on a reduced model to the scale 1:3.3 of a tractor-trailer. Moreover, numerical simulations of air flows are achieved on the software Fluent. Results of the simplified model present a good qualitative agreement with the applied and numerical data.  相似文献   

9.
10.
Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed for the higher blast loads case. Widespread tensile matrix damage was experienced for both blast load cases, while only for 875?g blast load fiber failure damage was observed. This agrees well with the experimental data showing that the composite panel was not able to resist to the 875?g blast load.  相似文献   

11.
徐维铮  吴卫国 《爆破》2017,34(4):40-45
封闭空间爆炸载荷主要包含瞬态冲击波和持续时间较长的准静态超压。为了研究封闭空间爆炸载荷特性,基于FORTRAN平台,采用三阶WENO有限差分格式编写了爆炸波高精度三维数值计算程序。应用Sod激波管、双爆轰波碰撞等经典算例验证了所开发数值程序的可靠性。在封闭空间内炸药爆炸波数值计算的基础上,基于冲量等效原则提出封闭空间内爆炸载荷简化模型,理论推导给出准静态超压峰值计算公式并通过数值计算结果验证了该公式的可靠性。开发的高精度爆炸波三维数值计算程序及提出的简化载荷模型可用于封闭空间内爆炸载荷的快速计算,为工程抗爆结构设计提供载荷输入。  相似文献   

12.
An inverse approach for the identification of pressure loading on a structure has been proposed and developed. In this approach, surface measurements of structural response (e.g. strain, displacement and velocity field measurements, such as can be measured with 3D digital image correlation) are utilized as input data and are combined with numerical simulations to identify the pressure load on a structure. The inverse approach has been verified by numerical benchmarks involving pressure identification under quasi-static as well as dynamic impulse loading conditions, and also been validated by an experiment involving a quasi-static pressure load. The results indicate that the proposed inverse method can identify not only the magnitude of the quasi-static pressure but also the impulsive pressure loading history. The developed inverse approach offers an opportunity to apply inverse analysis techniques to identify interactive pressure loads (such as those resulting from a blast wave) on structures in explosive events.  相似文献   

13.
In a military context, blast loadings are encountered, with more or less severe consequences on structures in interaction with a shock wave, which travels in a field. With a need of protecting the fighter, the understanding of this physical dynamic phenomenon is of extreme importance to avoid body trauma induced by the primary blast. In this context, this study explores simulations of blast loading, and its interaction with a human torso biomechanical model previously developed, based on referenced experiments from the literature. The concept of similarities is also studied (peak pressure equivalence for long distance and large explosive mass and short distance and small explosive mass). Validations of numerical results are conducted using experimental data from the literature in terms of pressure peak as a function of scaled distance, and also in terms of pressure time history in the biomechanical model. Good agreement between the numerical results and the experimental peak pressure is achieved.  相似文献   

14.
The risks associated with suitcase bombs are of serious concern because they can be easily handled and placed within close proximity of key structural components of building structures. The most common failure mode of the structures subjected to blast loads from satchel and suitcase bombs is progressive collapse. High-fidelity physics based computer program, LS-DYNA is utilized in this study to provide numerical simulations of the dynamic response and residual axial capacity of reinforced concrete (RC) columns subjected to blast loads. Field tests using near-field explosive charge were conducted on two RC column specimens. The test results were compared with the analytical results to validate the finite element model. An extensive parametric study was conducted to investigate the relationship between residual axial capacity and structural and loading parameters such as material strength, column detail and blast conditions. Two empirical equations were derived through a multivariable regression analysis in terms of the various parameters to predict the residual capacity index based on a non-dimensional column dimension parameter (ωTNT). According to the proposed equations, the residual capacity index can be determined and compared with a service axial load index.  相似文献   

15.
Numerical simulations are carried out to estimate the response and damage of unreinforced brick masonry walls subjected to explosive blast loading based on the transient dynamic finite element program LS-DYNA. A previously developed dynamic plastic damage model was used for brick and mortar. A new model for strain rate effects of bricks and mortar is included in the numerical analysis. The results obtained from the numerical models are compared with field test data and good agreement can be found. Parametric studies are conducted to evaluate the effect of material strength, boundary conditions, and thickness of the wall on the blast response of unreinforced brick masonry walls. It was found that boundary conditions and wall thickness significantly affect the blast response, while the effect of material strength is relatively small.  相似文献   

16.
This paper demonstrates the application of numerical simulation in predicting the interaction of blast waves with a series of aluminum cylinders at near-field. The results from the experiments performed by Held [Held M. Impulse method for the blast contour of cylindrical high explosive charges. Propellants Explos Pyrotech 1999;24:17–26] are used as a benchmark for comparison. This numerical simulation, performed using the fluid-structure coupling feature in AUTODYN-3D®, predicts the initial velocities of the aluminum cylinders in the vicinity of the blast field. Results from the numerical simulation yield relatively good agreement with those obtained from experiments, and also provide insight and explanations to some of the surprising results observed in the experiments. An understanding of these results from the experiments is crucial in determining the effects of close-in explosions from high explosive. The paper also includes the study of the momentum transfer to these cylinders when the explosive charge is initiated at two ends simultaneously. The results from this simulation are then compared with a case when it is initiated at two ends with different initiation times. In an effort to investigate the effects of high length-to-diameter ratios on the momentum transfer, simulation for a cylindrical charge with L/D = 3.0 is also included.  相似文献   

17.
This paper reports on experimental and numerical investigations into the response of flexible sandwich-type panels when subjected to blast loading. The response of sandwich-type panels with steel plates and polystyrene cores are compared to panels with steel face plates and aluminium honeycomb cores. Panels are loaded by detonating plastic explosive discs in close proximity to the front face of the panel. The numerical model is used to explain the stress attenuation and enhancement of the panels with different cores when subjected to blast induced dynamic loading. The permanent deflection of the back plate is determined by the velocity attenuation properties (and hence the transmitted stress pulse) of the core. Core efficiency in terms of energy absorption is an important factor for thicker cores. For panels of comparable mass, those with aluminium honeycomb cores perform “better” than those with polystyrene cores.  相似文献   

18.
Tests that investigate the inelastic response of blast-loaded sandwich structures, comprising mild steel plates and aluminium alloy honeycomb cores, are reported. The “uniform” loading was generated by detonating a disc of explosive and directing the blast through a tube towards the target. Localised blast loading was generated by detonating discs of explosive in very close proximity to the test structure. The sandwich panels responded in a more efficient manner to the uniformly distributed loading, and hence the majority of the paper is concentrated on uniform loading response. The honeycomb sandwich results are compared to test results on structures with air as the core. The failure modes and interaction between the components are discussed. Three phases of interaction are identified for each sandwich structure, based upon deformation, contact, crushing and tearing responses of the sandwich components. The compromise between load transfer through the core and improved energy absorption is discussed.  相似文献   

19.
为研究设防爆层钢箱梁抗近场爆炸作用效果,以53 g炸药当量、70 mm爆距为典型爆炸条件,开展了混凝土-单层/双层钢丝网板、5层/10层凯夫拉板及其组合为防爆层的钢箱梁缩尺结构近场爆炸试验研究。以塑性变形能为抗爆效果考查指标,8种试验工况结果表明:近场爆炸作用下无防护钢箱梁顶板会发生沿U型加劲肋的撕裂破坏及球冠状凹坑,且横隔板间距250 mm比间距150 mm的钢箱梁顶板破坏严重,变形能约高出60%;混凝土-双层钢丝网板较单层钢丝网板能降低钢箱梁顶板的变形能约2.2%;混凝土-双层钢丝网板与5层凯夫拉组合作为防爆层,顶板塑性变形能降低至无防护结构钢箱梁顶板的34.5%,混凝土-双层钢丝网板与10层凯夫拉组合作为防爆层,该数值约为32.7%。  相似文献   

20.
The dynamic responses and blast resistance of all-metallic sandwich-walled hollow cylinders with graded aluminum foam cores are investigated using finite element simulations, and compared with those of conventional ungraded ones. After validating the numerical approach and introducing the computational model, sandwich-walled hollow cylinders with various graded aluminum foam cores are analyzed under air blast loading. It is demonstrated that the radial deflection of graded cylinders is smaller than and the blast resistance superior to that of ungraded ones when subjected to identical air blast loading. This can be further improved by optimizing the foam core arrangement. Finally, the influence of face-sheet arrangements on the dynamic behavior of graded cylinders is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号