首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes a charge-transferred well (CTW) sensing method for high-speed array circuit operation and a level-controllable local power line (LCL) structure for high-speed/low-power operation of peripheral logic circuits, aimed at low voltage operating and/or giga-scale DRAMs. The CTW method achieves 19% faster sensing and the LCL structure realizes 42% faster peripheral logic operation than the conventional scheme, at 1.2 V in 15 Mb-level devices. The LCL structure realizes a subthreshold leakage current reduction of three or four orders of magnitude in sleep mode, compared with a conventional hierarchical power line structure. A negative-voltage word line technique that overcomes the refresh degradation resulting from reduced storage charge (Qs) at low voltage operation for improved reliability is also discussed. An experimental 1.2 V 16 Mb DRAM with a RAS access time of 49 ns has been successfully developed using these technologies and a 0.4-μm CMOS process. The chip size is 7.9×16.7 mm2 and cell size is 1.35×2.8 μm2  相似文献   

2.
A battery-operated 16-Mb CMOS DRAM with address multiplexing has been developed by using an existing 0.5-μm CMOS technology. It can access data in 36 ns when powered from a 1.8-V battery-source, and 20 ns at 3.3 V. However, this device requires a mere 57 mA of operating current for an 80-ns cycle time and only 5 μA of standby current at 3.3 V. To achieve both high-speed and low-power operation, the following four circuit techniques have been developed: 1) a parallel column access redundancy (PCAR) scheme coupled with a current sensing address comparator (CSAC), 2) an N&PMOS cross-coupled read-bus-amplifier (NPCA), 3) a gate isolated sense amplifier (GISA) with low VT, and 4) a layout that minimizes the length of the signal path by employing the lead on chip (LOC) assembly technique  相似文献   

3.
Approaches to extra low voltage DRAM operation by SOI-DRAM   总被引:1,自引:0,他引:1  
The newly designed scheme for a low-voltage 16 MDRAM/SOI has been successfully realized and the functional DRAM operation has been obtained at very low supply voltage below 1 V. The key process and circuit technologies for low-voltage/high-speed SOI-DRAM will be described here. The extra low voltage DRAM technologies are composed of the modified MESA isolation without parasitic MOS operation, the dual gate SOI-MOSFETs with tied or floating bodies optimized for DRAM specific circuits, the conventional stacked capacitor with increased capacitance by thinner dielectric film, and the other bulk-Si compatible DRAM structure. Moreover, a body bias control technique was applied for body-tied MOSFETs to realize high performance even at low voltage. Integrating the above technologies in the newly designed 0.5-μm 16 MDRAM, high-speed DRAM operation of less than 50 ns has been obtained at low supply voltage of 1 V  相似文献   

4.
This paper describes fault-tolerant designs, which have been used to boost the yield of a 286 mm2 256 Mb DRAM with x32 both-ends DQ. The 256 Mb DRAM consists of sixteen 16 Mb units, each containing one 128 Kb row redundancy block. This row redundancy block architecture allows flexible row redundancy replacement, where random faults, clustered faults, and grouped faults can be efficiently repaired. Flexible column redundancy replacement with interchangeable master DQ's (MDQ) is used to allow a 256 b data compression without causing a data conflict, while improving the column access speed by 2 ns. A depletion NMOS bitline-precharge-current-limiter suppresses the current flow which occurs as a result of a wordline-bitline short-circuit to only 15 μA per cross fail, avoiding a standby current fail. Consequently, the hardware results show a significant yield enhancement of 16 times relative to the intra-block/segment replacement. Detailed simulation results show that this 256 Mb DRAM allows 275 random faults to be repaired with 5.5% silicon area overhead for 80% chip yield  相似文献   

5.
Low current leakage characteristics of a novel silicon-on-insulator (SOI) device are investigated in view of application to a gain-cell dynamic random access memory (DRAM). The device consists of a two-layered poly-Si gate. Since, in this device, the memory node is electrically formed by the gate in undoped SOI wire, no p-n junction is required. The retention is found to be dominated by the subthreshold leakage, which leads to long data retention. The device also achieved a fast (10 ns) writing time and its fabrication process is compatible with those of SOI MOSFETs. The present results, thus, strongly suggest a way of conducting a gain-cell DRAM to be embedded into logic circuits  相似文献   

6.
This paper proposes a new DRAM power-off mode, in which the power source is completely shut off during the standby cycle, resulting in a zero standby leakage current. By introducing a new word-line power-off/on sequence and a grounded cell plate technique, all cell data are maintained after power source is turned off and on. Although the proposed mode requires a power-on current, an average standby leakage current is reduced by a factor of 1000, and the total standby current including both the leakage current and refresh current is reduced by a factor of 10 in a 1 Gb DRAM. The proposed circuit technique was verified by a 64 Kb DRAM test chip. All cell data were successfully maintained after the power source switching. The measured power-off time was as long as the measured data retention time in the conventional DRAM standby mode  相似文献   

7.
A DRAM sensing circuit that achieves both a fast RAS access time and a high-bandwidth burst operation is proposed. For the data burst capability of synchronous DRAM's, 256-bit-long data I/O lines are divided into eight segments. A small local latch is provided for each segment of 32 bit-line pairs to prefetch eight data out of the 256 sense amplifiers. A local buffer is connected to eight local latches through selection switches. Burst read operations, up to eight bits, are done by activating selection switches and the local buffer serially. Besides this prefetch capability, the segmented data I/O line results in very small capacitance, only 0.09 pF. The sensing scheme uses nMOS bit switches and a full Vdd precharge voltage for bit and segmented data I/O lines. Then, after sense amplifiers are turned on, only low-going bit lines are connected to the segmented data I/O lines without any voltage disturbance because of the small capacitance. The proposed circuit, therefore, realizes a high-speed RAS access, which is 16 ns faster than a conventional DRAM. A circuit layout design based on a 0.5-μm design rule shows no area impact  相似文献   

8.
This paper proposes a novel design method to minimize the leakage power during standby mode using a novel adaptive supply voltage and body-bias voltage generating technique for nanoscale VLSI systems. The process, voltage, and temperature (PVT) variations are monitored and controlled independently by their own dedicated systems. The minimum level of $V_{rm DD}$ and the optimum body-bias voltage are generated for different temperature and process conditions adaptively using a lookup table method based on the PVT monitoring and controlling systems. The power supply variations is accurately compensated adaptively through the monitoring circuits based on the propagation delay change of the inverter chains. The subthreshold current as well as gate-tunneling and band-to-band-tunneling currents are monitored and minimized adaptively by the optimally generated body-bias voltage. The proposed design method reduces the leakage power at least by 500 times for ISCAS'85 benchmark circuits designed using 32-nm CMOS technology comparing to the case where the method is not applied.   相似文献   

9.
Digital subthreshold logic provides extremely low power consumption since the power supplies are kept below the threshold voltage and using the small subthreshold current of MOS transistors to operate. In this paper, a body-bias technique to match the subthreshold currents of both the NMOS and PMOS transistors is explored and a Schmitt trigger circuit employing this bias technique is proposed. Extensive circuit simulations were conducted and the results were compared with standard body bias technique in terms of performance parameters. The simulation results were obtained with 0.18 μm technology parameters. The conclusion is that Schmitt trigger with this body biasing is suitable for high performance and ultra low power applications.  相似文献   

10.
A low-voltage high-speed 16-Mb SOI-DRAM has been developed using a 0.5-μm CMOS/SIMOX technology. A newly introduced “FD-PD mode switching” transistor dynamically switches its operation mode between fully depleted (FD) and partially depleted (PD) according to the body bias voltage, thus it has both PD-mode large current drivability and FD-mode small leakage current. By the body bias control, the transistor operates as if it has an S-factor of 30 mV/decade. Enabling both high speed and low power at a low voltage, 30 mV is only one-half the theoretical value. By utilizing the transistor, we have developed body pulsed sense amplifier (BPS), body driven equalizer (BDEQ), body current clamper (BCC), and body pulsed transistor logic (BPTL) to achieve 46 ns access time at 1 V power supply with suppressed standby current  相似文献   

11.
A time-shared offset-canceling sensing scheme, a defective word-line Hi-Z standby scheme, and a flexible multimacro architecture have been developed for 1-Gb DRAM. These circuit technologies have been applied to a 1-Gb DRAM for file applications employing 0.25 μm CMOS process technology, a diagonal bit-line cell, and a two-stage pipeline circuit technique. In this DRAM, a 30% chip size reduction and a 400-MB/s data transfer rate have been achieved. A 100% improvement in yield has been estimated by Monte-Carlo simulation. The 1-Gb DRAM die size is 936 mm2. The cell size is 0.54 μm2. The operating current is 58 mA at 2 V and 100 MHz  相似文献   

12.
This paper describes the 32-Mb and the 64-Mb embedded DRAM core with high efficient redundancy, which is fabricated using 0.13-μm triple-well 4-level Cu embedded DRAM technology. Core size of 18.9 mm 2 and cell efficiency of 51.3% for the 32-Mb capacity, and core size of 33.4 mm2 and cell efficiency of 58.1% for the 64-Mb capacity are realized. This core can achieve 230-MHz burst access at 1.0-V power-supply condition by adopting a new data bus architecture: merged shift column redundancy. We implemented four test functions to improve the testability of the embedded DRAM core. It realizes the DRAM core test in a logic test environment  相似文献   

13.
256-Mb DRAM circuit technologies characterized by low power and high fabrication yield for file applications are described. The newly proposed and developed circuits are a self-reverse-biasing circuit for word drivers and decoders to suppress the subthreshold current to 3% of the conventional scheme, and a subarray-replacement redundancy technique that doubles chip yield and consequently reduces manufacturing costs. An experimental 256-Mb DRAM has been designed and fabricated by combining the proposed circuit techniques and a 0.25-μm phase-shift optical lithography, and its basic operations are verified. A 0.72-μm2 double-cylindrical recessed stacked-capacitor (RSTC) cell is used to ensure a storage capacitance of 25 fF/cell. A typical access time under a 2-V power supply voltage was 70 ns. With the proper device characteristics, the simulated performances of the 256-Mb DRAM operating with a 1.5-V power supply voltage are a data-retention current of 53 μA and an access time of 48 ns  相似文献   

14.
We implemented 72-Mb direct Rambus DRAM with new memory architecture suitable for multibank. There are two novel schemes: flexible mapping redundancy (FMR) technique and additional refresh scheme. This paper shows that multibank reduces redundancy area efficiency. But with the FMR technique, this 16-bank DRAM realizes the same area efficiency as a single-bank DRAM. In other words, FMR reduces chip area by 13%. This paper also describes that additional refresh scheme reduces data retention power to 1/4. Its area efficiency is about four times better than that of the conventional redundancy approach  相似文献   

15.
A novel fast random cycle embedded RAM macro with dual-port interleaved DRAM architecture (D2RAM) has been developed. The macro exploits three key circuit techniques: dual-port interleaved DRAM architecture, two-stage pipelined circuit operation, and write before sensing. Random cycle time of 8 ns under worst-case conditions has been confirmed with a 0.25-μm embedded DRAM test chip. This is six times faster than conventional DRAM  相似文献   

16.
Process integration of cell capacitors that can circumvent the usual difficulties of large topographic height difference and high-temperature process are presented. A 16 Mbit silicon-on-insulator (SOI) DRAM with a 0.3 μm design rule is successfully fabricated and analyzed for processing integrity and circuit performance based on process integration of the cell capacitor using the pattern-bonded SOI (PBSOI) technology. Measurements for the strobe access time (tRAC) acid the operation current (Iccl) show significant improvement (over 25%) for the SOI DRAM compared to those for the 16 Mbit bulk counterpart with the same circuit and layout. On the transistor side, ultra-low-voltage transistor technology using the body bias control schemes is also implemented and investigated. Devices with small leakage current and almost ideal subthreshold swing are obtained. The results give us guidance for transistor and process schematics for low-voltage DRAM application  相似文献   

17.
An SOI-DRAM test device (64-Kb scale) with 100-nm-thick SOI film has been fabricated in 0.5-μm CMOS/SIMOX technology and the basic DRAM function has been successfully observed. A partially depleted transistor was used to solve the floating-body effect, resulting in improved operation. The newly introduced body-synchronized sensing scheme enhances the lower Vcc margin. The p-n junction capacitance between source/drain and a substrate for SOI structure is reduced by 25%. RAS access time tRAC is 70 ns with a 2.7-V power supply, which is as fast as the equivalent bulk-Si device with a 4-V power supply. The active current consumption is 1.1 mA (Vcc=3.0 V, 260-ns cycle) for this SOI-DRAM, which is a reduction of 65%, compared with 3.2 mA for the reference bulk-Si DRAM. The mean value of data retention time for this chip at 80°C is longer than 20 s (Vcc=3.3 V), which is the same value as mass-produced 16-Mb DRAM's. The SOI-DRAM has an operating Vcc range from 2.3 V to 4.0 V. The observed speed enhancement and the wide operating voltage range indicate high performance at the low voltage operation suitable for battery-operated DRAM's  相似文献   

18.
A system integrated LSI chip (SLSI) that contains eleven 4-Mb DRAMs, six 64-kb SRAMs, and an 18 K-gate array, for a graphics application system is described. To implement the SLSI on a silicon chip, three key techniques have been developed: (1) system redundancy for defect relief; (2) chip configuration and fabrication with blade masking to achieve a hybrid 38.16×50.4-mm2 chip; and (3) large-capability and high-reliability 324-pin 54×86-mm2 plastic pin grid array package. Using a system redundancy technique, a 60% yield for the SLSI is achieved with a 40% yield for the DRAM itself. That is twice the 30% yield of the conventional repair scheme. Access times are 65 ns for the DRAM and 14 ns for the SRAM with a 3.9-W chip power dissipation  相似文献   

19.
Presents a new DRAM array architecture for scaled DRAMs. This scheme suppresses the stress bias for memory cell transistors and enables memory cell transistor scaling. In this scheme, the data "1" and data "0" are written to the memory cell in different timing. First, for all selected cells, data "1" is written by boosting wordline (WL) voltage. Second, after pulling down WL voltage to a lowered value, data "0" is written only for data "0" cells. This scheme reduces stress bias for the cell transistor to half of that of the conventional operation. The time loss for data "1" write is eliminated by parallel processing of data "1" write and sense amplifier activation. This scheme realizes fast cycle time of 50 ns. By adopting the proposed scheme, the gate-oxide thickness of the cell transistor is reduced from 5.5 to 3 nm, and the memory cell size is reduced to 87% in 0.13-μm DRAM generation. Moreover, the application of the oxide-stress relaxation technique to all row-path circuits as well as the proposed scheme enables high-performance DRAM with only a thin gate-oxide transistor  相似文献   

20.
We describe a single voltage supply, 1 MB cache subsystem prototype that integrates 2 GHz embedded DRAM (eDRAM) macros with on-chip word-line voltage supply generation , a 4 Kb one-time-programmable read-only memory ( OTPROM ) for redundancy and repair control, on-chip OTPROM programming voltage generation, clock generation and distribution, array built-in self-test circuitry (ABIST), user logic and pervasive logic. The eDRAM employs a programmable pipeline, achieving 1.8 ns latency, and features concurrent refresh capability.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号