首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The whole-cell configuration of the patch clamp technique was used to record miniature gamma-aminobutyric acidA (GABAA) receptor-mediated currents (in tetrodotoxin, 1 microM and kynurenic acid 1 mM) from CA3 pyramidal cells in thin hippocampal slices obtained from postnatal (P) day (P6-9) old rats. Switching from a Ca2+-containing to a nominally Ca2+-free medium (in which Ca2+ was substituted with Mg2+, in the presence or in the absence of 100 microM EGTA) did not change significantly the frequency or amplitude of miniature events. Superfusion of thapsigargin induced a concentration-dependent increase in frequency but not in amplitude of tetrodotoxin-resistant currents that lasted for the entire period of drug application. Mean frequency ratio (thapsigargin 10 microM over control) was 1.8+/-0.5, (n = 9). In nominally Ca2+-free solutions thapsigargin was ineffective. When bath applied, caffeine (10 mM), reversibly reduced the amplitude of miniature postsynaptic currents whereas, if applied by brief pressure pulses, it produced an increase in frequency but not in amplitude of spontaneous GABAergic currents. Superfusion of caffeine (10 mM) reversibly reduced the amplitude of the current induced by GABA (100 microM) indicating a clear postsynaptic effect on GABAA receptor. Superfusion of ryanodine (30 microM), in the majority of the cells (n = 7) did not significantly modify the amplitude or frequency of miniature events. In two of nine cells it induced a transient increase in frequency of miniature postsynaptic currents. These results indicate that in neonatal hippocampal neurons, mobilization of calcium from caffeine-ryanodine-sensitive stores facilitates GABA release.  相似文献   

2.
We describe here a novel effect of activity on the subcellular distribution of NMDA receptors in hippocampal neurons in culture. In spontaneously active neurons, NMDA receptors were clustered at a few synaptic and nonsynaptic sites. Chronic blockade of NMDA receptor activity induced a 380% increase in the number of NMDA receptor clusters and a shift to a more synaptic distribution. This effect was reversible. The distributions of the presynaptic marker synaptophysin, the AMPA-type glutamate receptor subunit GluR1, and the putative NMDA receptor clustering protein PSD-95 were not affected by blockade. Regulation of the synaptic localization of NMDA receptors by activity may define a novel mechanism by which input controls a neuron's ability to modify its synapses.  相似文献   

3.
A NAD-dependent mannitol dehydrogenase (MtlD) was purified to homogeneity from P. fluorescens DSM50106 and the N-terminal amino acid sequence was determined. An oligonucleotide deduced from this peptide sequence was used as a probe to isolate the mannitol dehydrogenase gene (mtlD) from a genomic library of P. fluorescens. Nucleotide sequence analysis of a 1.8 kb NruI fragment containing the entire mtlD gene revealed an open reading frame of 1482 bp encoding a protein with a calculated molecular weight of 54.49 kDa. The enzyme shared a high similarity with a mannitol dehydrogenase from Rhodobacter sphaeroides and a putative mannitol dehydrogenase of Saccharomyces cerevisae with an overall identity in amino acid sequence of 44% and 42%, respectively, whereas the similarity to mannitol-1-phosphate dehydrogenases of Escherichia coli or Enterococcus faecalis was only about 23% of identical amino acids. By construction of inducible expression plasmids the specific activity of the mannitol dehydrogenase synthesized in E. coli was increased from 0.02 U (mg protein)(-1) to 10 U (mg protein)(-1). After fusion of six histidine codons to the 3' end of mtlD gene and expression in E. coli active mannitol dehydrogenase could be purified in a two-step procedure by affinity chromatography using a Ni2+ matrix column. The purified enzyme exhibited a specific activity of 46 U (mg protein)(-1) and was shown to be a polyol dehydrogenase with a broad substrate spectrum oxidizing efficiently mannitol, sorbitol and arabitol.  相似文献   

4.
The whole cell configuration of the patch-clamp technique was used to study the modulation gamma-aminobutyric acid (GABA)-mediated postsynaptic currents by ruthenium red in CA3 hippocampal neurons in slices obtained from postnatal (P) days P6-P10 old rats. In the presence of kynurenic acid (1 mM), ruthenium red (100 microM) completely blocked stimulus-elicited GABA-mediated postsynaptic currents and reduced by 50% the amplitude of the spontaneous ones. Ruthenium red (100 microM) increased the frequency but not the amplitude of miniature GABAergic currents recorded in the presence of tetrodotoxin (1 microM) and kynurenic acid (1 mM), an effect that was prevented by heparin (100 microM). Ruthenium red did not modify the kinetics of miniature postsynaptic currents and the currents induced by exogenous application of GABA (10 microM) in the presence of tetrodotoxin, suggesting that its action was presynaptic in origin. The effects of ruthenium red on quantal GABA release was independent of external calcium. In a nominally Ca2+-free solution the potentiating effect induced by this polyvalent cation on miniature postsynaptic currents was still present. Intracellular calcium stores were not involved in ruthenium red action, because this polyvalent cation was able to facilitate miniature currents also in the presence of thapsigargin (10-20 microM). These results indicate that ruthenium red has a dual action on GABA release from GABAergic interneurons: it reduces the amplitude of spontaneous events and increases the frequency of miniature currents. The former effect is calcium-dependent, whereas the latter is calcium independent.  相似文献   

5.
1. The passive cable properties of rat hippocampal neurons in dissociated culture were studied using focal application of hypertonic solution to locally elicit miniature excitatory postsynaptic currents (mEPSCs) on the soma and dendrites. Neurons were filled with Lucifer yellow and portions of their dendritic trees were measured. 2. The average mEPSC measured at the soma appeared smaller and slower as the site of sucrose application was made more distal. Normalizing to a 1-micron diam dendrite, the mean mEPSC peak amplitude and charge was reduced e-fold in 170 and 1,000 microns, respectively, and the mean mEPSC decay time constant was increased e-fold in 150 microns. However, for any particular sucrose site, individual mEPSCs varied widely in their amplitudes and time courses. Plots of individual peak amplitudes versus half-width or rise time showed much overlap for mEPSCs originating from sites as much as 100 microns apart. This suggests that use of such plots to estimate the electrotonic location of synaptic currents is highly prone to error. 3. Averaged mEPSCs recorded when applying sucrose at the soma were poorly fitted by an alpha function but were well-described by an equation of the form mxh, where m incorporates a rise-time constant tau 1 and h a decay time constant tau 2. Averaged fits to mean mEPSCs elicited at the somas of five cells gave (mean +/- SE): peak conductance = 832 +/- 126 pS, tau 1 = 0.29 +/- 0.06 ms, tau 2 = 3.03 +/- 0.24 ms, x = 4.7 +/- 0.7. 4. For three cells, the entire dendritic branch to which sucrose was applied was measured and used to construct a passive cable model. The specific membrane resistance (Rm) and intracellular resistivity (Ri) were varied systematically in the model (assuming membrane capacitance Cm = 1 microF/cm2) to search for the best agreement between the mean mEPSCs and the model. Optimal Rm was found to lie in the range 20-30 k omega cm2, Ri in the range 100-200 omega cm. 5. These results confirm those obtained by other methods and emphasize the considerable cable filtering of fast electrical events in cultured hippocampal neurons.  相似文献   

6.
The idea that astrocytes merely provide structural and trophic support for neurons has been challenged by the demonstration that astrocytes can regulate neuronal calcium levels. However, the physiological consequences of astrocyte-neuron signalling are unknown. Using mixed cultures of rat hippocampal astrocytes and neurons we have determined functional consequences of elevating astrocyte calcium levels on co-cultured neurons. Electrical or mechanical stimulation of astrocytes to increase their calcium level caused a glutamate-dependent slow inward current (SIC) in associated neurons. Microinjection of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into astrocytes to prevent the stimulus-dependent increase in astrocyte calcium level, blocks the appearance of the neuronal SIC. Pharmacological manipulations indicate that this astrocyte-dependent SIC is mediated by extracellular glutamate acting on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Additionally, stimulation of astrocytes reduced the magnitude of action potential-evoked excitatory and inhibitory postsynaptic currents through the activation of metabotropic glutamate receptors. The demonstration that astrocytes modulate neuronal currents and synaptic transmission raises the possibility that astrocytes play a neuromodulatory role by controlling the extracellular level of glutamate.  相似文献   

7.
The whole-cell mode of patch-clamp techniques was used to investigate the effect of vasoactive intestinal polypeptide (VIP) on spontaneous gamma-aminobutyric acid (GABA)-mediated inhibitory postsynaptic currents (IPSCs) of cultured hippocampal neurons. Application of VIP caused a significant increase in the frequency of spontaneous IPSCs with a reversible and dose-dependent manner. VIP had no effect on the mean amplitude and kinetic parameters of spontaneous IPSCs. In the presence of tetrodotoxin, VIP increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) without affecting their mean magnitude. Forskolin, but not its inactive analog 1,9-dideoxyforskolin, mimicked the stimulatory effect of VIP on spontaneous IPSCs and mIPSCs. VIP and forskolin failed to modulate GABAergic IPSCs in the presence of Rp-cAMPs, a cell permeable antagonist of cAMP-dependent protein kinase (PKA). Calcium channel blocker CdCl2 did not prevent VIP and forskolin from increasing the frequency of mIPSCs. These results suggest that the activation of presynaptic VIP receptor enhances the GABAergic synaptic transmission in cultured hippocampal neurons through the cAMP-PKA pathway and that VIP is likely to increase GABA release by directly stimulating the vesicular release apparatus.  相似文献   

8.
The inhibition of N-methyl-D-aspartate (NMDA)-activated current in cultured fetal rat hippocampal neurons by Pb2+ was investigated at various stages of cell development. Pb2+ selectively inhibited NMDA currents recorded from young cultured neurons. In the first week of culture, Pb2+ showed the most prominent inhibition, which was gradually attenuated in the following weeks. Pb2+'s action was selective for NMDA- as opposed to either kainate- or quisqualate-induced currents. The current-voltage relationship for NMDA-induced currents in the presence of Pb2+ revealed that the effect of this cation was voltage-independent, which suggested that the site of interaction of Pb2+ with the NMDA receptor/channel is located outside the membrane electric field. Single channel studies showed that Pb2+ reduced the frequency but not the lifetime of the NMDA-activated single channel currents. Further evaluation of the mechanism of action of Pb2+ on the NMDA receptor demonstrated that this cation is a noncompetitive antagonist of both NMDA and glycine. We have demonstrated that the NMDA-induced whole cell currents change along with cell development, and the effects of Pb2+ are also dependent upon age of culture. The NMDA-induced currents in cultured rat hippocampal neurons had two components, one that decayed rapidly and another that decayed slowly. The fast component was clearly observed at concentrations of glycine higher than 1 microM, whereas the slow component reached its maximum amplitude at the glycine concentration of 1 microM. Moreover, the rapidly decaying component of NMDA-evoked whole cell currents was predominant in young cultured neurons, and its contribution to the total current was reduced in old cultured neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Miniature, gamma-aminobutyric acid A receptor mediated inhibitory postsynaptic currents (mIPSCs) were recorded from CA3 pyramidal cells in hippocampal slice cultures using whole-cell techniques in the presence of tetrodotoxin. The kinetics and amplitudes of the mIPSCs were analyzed with the aim of determining whether subclasses of events arising from distinct populations of presynaptic interneurons could be distinguished. Histograms of mIPSC amplitude, rise time constant, and decay time constant were all positively skewed, but discrete subsets of events could not be distinguished. The positive skew did not appear to result from electrotonic filtering of distal synaptic currents because there was no correlation among mIPSC amplitudes and the kinetic parameters. Analysis of the intervals between mIPSCs indicated that each event occurred independently. The analysis of spontaneous mIPSCs does not provide evidence of the innervation of pyramidal cells by heterogeneous interneurons.  相似文献   

10.
The development and maturation of the endolymphatic sac (ES) and duct (ED) were studied in the newt Cynops pyrrhogaster. The ES first appears as an oval capsule at the dorsal-medial tip of the otic vesicle at stage 39, about 11 days after oviposition. The ES consists of polymorphous epithelial cells with a minimum of cytoplasm. The intercellular space (IS) between the epithelial cells is narrow and has a smooth surface. At stage 44, the size of the ES increases as many vacuoles in the IS become filled. At stage 46, 18 days after oviposition, the ES elongates markedly and a slit-like lumen is found in the ES. The epithelium contains a few cell organelles which are scattered in the cytoplasm. The vacuoles in the IS are fused, which expands the IS. Two days later (stage 48), floccular material (endolymph) is present in the expanded lumen. The IS dilates and has a wide and irregular appearance. At stage 50, approximately 26 days after oviposition, the ES extends and expands significantly and crystals (otoconia) can now be seen in the widened lumen of the ES. The cytoplasm of the cuboidal epithelial cells contains an abundance of vesicles surrounded by ribosomes and Golgi complexes. Intercellular digitations are formed in the expanded IS. At stage 54, the ES forms a large bellow-like pouch. Numerous otoconia accumulate in the lumen. Free floating cells and cell debris can be seen in the lumen at this stage. The epithelial cells contain numerous cytoplasmic organelles which are evenly distributed in the cytoplasm. Granules are found in the apical and lateral cytoplasm. The IS is loose and displays a labyrinthine appearance. The primitive ED first appears as a connection between the ES and the saccule but no lumen is present inside at stage 39. At stage 46, a narrow lumen is formed in the ED, which corresponds to the formation of the ES lumen. At stage 50, as the ED extends, floccular material is seen in the lumen. At stage 54, the ED bears numerous microvilli on its luminal surface. Otoconia and endolymph are present in the ED. Tight junctions between the epithelial cells are formed at stage 46. A fully developed intercellular junctional complex is produced at stage 54. Based on the development of the ES and ED, the maturation of function of the ES and ED are discussed.  相似文献   

11.
Neonatal (P0) gamma-irradiation was used to lesion selectively the mossy fiber (MF) synaptic input to CA3 pyramidal cells. This lesion caused a > 85% reduction in the MF input as determined by quantitative assessment of the number of dynorphin immunoreactive MF boutons. The gamma-irradiation lesion caused a reduction in the mean number of miniature excitatory postsynaptic currents (mEPSCs) recorded from CA3 pyramidal cells (2,292 vs. 1,429/3-min period; n = 10). The lesion also caused a reduction in the mean mEPSC peak amplitude from 19.1 +/- 0.45 to 14.6 +/- 0.49 pA (mean +/- SE; peak conductance 238.8 +/- 5.6 to 182.0 +/- 6.1 pS). Similarly, there was a reduction in the mean 10-85% rise time from 1.72 +/- 0.02 ms to 1.42 +/- 0.04 ms. The effects of the gamma-irradiation on both mEPSC amplitude and 10-85% rise time were significant at P < 0.002 and P < 0.005 (2-tailed Kolmogorov-Smirnov test). Based on the selectively of the gamma-irradiation, MF and non-MF mEPSC amplitude and 10-85% rise-time distributions were calculated. Both the amplitude and 10-85% rise-time distributions showed extensive overlap between the MF and non-MF mediated mEPSCs. The MF mEPSC distributions had a mean peak amplitude of 24.6 pA (307.5 pS) and a mean 10-85% rise time of 2.16 ms. THe non-MF mEPSC distributions had a mean peak amplitude of 12.2 pA (152.5 pS) and 10-85% rise time of 1.26 ms. The modes of the amplitude distributions were the same at 5 pA (62 pS). The MF and non-MF mEPSC amplitude and 10-85% rise-time distributions were significantly different at P < 0.001 (1-tailed, large sample Kolmogorov-Smirnov test). The data demonstrate that the removal of the MF synaptic input to CA3 pyramidal cells leads to the absence of the large amplitude mEPSCs that are present in control recordings.  相似文献   

12.
1. The effects of the volatile anesthetics enflurane, halothane, and isoflurane on gamma-aminobutyric acid (GABA) receptor-mediated inhibitory postsynaptic currents (IPSCs) were studied in cultured rat hippocampal neurons. The experimental concentrations of anesthetics were measured directly using gas chromatography. All three anesthetics increased the overall duration of IPSCs, measured as the time to half-decay (T1/2). Clinically effective concentrations of anesthetics [between 0.5 and 1.5 times MAC (minimum alveolar concentration)] produced between 100 and 400% increases in T1/2. These effects were fully reversible, and did not involve alterations in the reversal potential for the IPSC (EIPSC). 2. The decay of the IPSC was fitted as a sum of two exponential functions, yielding a fast component (tau fast = 20 ms), and a slow component (tau slow = 77 ms), such that the fast component accounted for 79% of the IPSC amplitude and 52% of the total charge transfer. All three anesthetics produced concentration-related increases in the amplitude and charge transfer of the slow component, while simultaneously decreasing the amplitude and charge transfer of the fast component. Thus T1/2 approximated tau fast under control conditions, but approximated tau slow in the presence of the anesthetics. 3. Varying the calcium chelating agents in the recording pipettes had no effect on the quality or magnitude of alterations in IPSC kinetics produced by halothane, suggesting that variations in intracellular calcium levels are not required for the effect of halothane on the time course of the IPSC. 4. The (+)-stereoisomer of isoflurane produced greater increases in the duration of the IPSC than the (-)-isomer when applied at approximately equal concentrations, suggesting that there is a structurally selective site of interaction for isoflurane that modulates the GABAA receptor. 5. These results suggest that the previously shown abilities of volatile anesthetics to potentiate responses to exogenously applied GABA and to prolong the duration of GABA-mediated synaptic inhibition may be due to an alteration in the gating kinetics of the GABAA receptor/channel complex. Prolongation of synaptic inhibition in the CNS is consistent with the physiological effects that accompany anesthesia and may contribute to the mechanism of anesthetic action.  相似文献   

13.
Neurotoxic effects of excitatory amino acids have been implicated in various neurological disorders, and have been utilized for excitotoxic models of delayed neuronal cell death. The excitotoxic glutamate-induced, delayed neuronal cell death also results in inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II). In this report, we characterized the glutamate-induced inhibition of CaM kinase II in relation to loss of intracellular calcium regulation and delayed neuronal cell death. Glutamate (500 microM for 10 min), but not KCl (50 mM), exposure resulted in a significant inhibition of CaM kinase II activity. The inhibition of CaM kinase II activity was observed immediately following excitotoxic glutamate exposure and present at every time point measured. Glutamate-induced inhibition of kinase activity and delayed neuronal cell death was dependent upon both the activation of the NMDA glutamate receptor subtype and the presence of extracellular calcium. The relationship between inhibition of CaM kinase II activity and loss of intracellular calcium regulation was also examined. Experimental conditions which resulted in significant neuronal cell death and inhibition of CaM kinase II activity also resulted in a long-term loss of intracellular calcium regulation. Thus, inhibition of CaM kinase II activity occurred under experimental conditions which resulted in loss of neuronal viability and loss of neuronal calcium regulation. Since the glutamate-induced inhibition of CaM kinase II activity preceded neuronal cell death, the data support the hypothesis that inhibition of CaM kinase II activity may play a significant role in excitotoxicity-dependent, delayed neuronal cell death.  相似文献   

14.
The effects of the human immunodeficiency virus type 1 envelope protein gp120 on the release of GABA elicited by N-methyl-D-aspartate (NMDA) from rat hippocampal neurons in primary culture has been investigated. NMDA (1-300 microM) increased in a concentration-dependent manner (EC50 =37.9+/-12 microM) the release of [3H]-GABA. The effect of 100 microM NMDA was prevented by 30 microM of the GABA transport inhibitor N-(4,4-diphenyl-3-butenyl)guvacine (SKF 100330A). Glycine (10 microM) or gp120 (0.01 microM) affected neither the basal nor the NMDA-evoked [3H]-GABA release. The NMDA (100 microM)-evoked release was prevented by 5,7-dichloro-kynurenic acid (5,7-DCKA), a selective antagonist at the glycine site of the NMDA receptor, in a concentration-dependent manner (IC50 approximately 0.3 microM). Glycine (3-10 microM) or gp120 (0.003-0.01 microM) produced reversal of the 5,7-DCKA antagonism in a way that suggested competition at a same site; gp120 was at least 3 orders of magnitude more potent than glycine. It is suggested that gp120 may mimic glycine at NMDA receptors.  相似文献   

15.
The biological basis of the clinical efficacy of lithium in the treatment of mental illness has been extensively studied in neurones, but little is known about the effects of the drug on glia. Recently we showed that treatment of rats with clinically relevant doses of lithium chloride results in a 35% increase in the immunocontent of the astrocyte marker GFAP in the hippocampus. Here we studied the cytology of this phenomenon. Rats were treated for 4 weeks with a lithium diet which resulted in serum Li+ concentrations of 0.6-1.2 mmol/l. GFAP immunocytochemistry of the hippocampus revealed a mild gliosis in the CA1 area and the dentate gyrus which was associated with a change in the orientation of astrocytic processes. In control animals astrocyte processes were mainly orientated perpendicular to the stratum pyramidale, whereas in treated animals the cells were predominantly stellar in appearance.  相似文献   

16.
Synaptic vesicles are concentrated in the distal axon, far from the site of protein synthesis. Integral membrane proteins destined for this organelle must therefore make complex targeting decisions. Short amino acid sequences have been shown to act as targeting signals directing proteins to a variety of intracellular locations. To identify synaptic vesicle targeting sequences and to follow the path that proteins travel en route to the synaptic vesicle, we have used a defective herpes virus amplicon expression system to study the targeting of a synaptobrevin-transferrin receptor (SB-TfR) chimera in cultured hippocampal neurons. Addition of the cytoplasmic domain of synaptobrevin onto human transferrin receptor was sufficient to retarget the transferrin receptor from the dendrites to presynaptic sites in the axon. At the synapse, the SB-TfR chimera did not localize to synaptic vesicles, but was instead found in an organelle with biochemical and functional characteristics of an endosome. The chimera recycled in parallel with synaptic vesicle proteins demonstrating that the nerve terminal efficiently sorts transmembrane proteins into different pathways. The synaptobrevin sequence that controls targeting to the presynaptic endosome was not localized to a single, 10- amino acid region of the molecule, indicating that this targeting signal may be encoded by a more distributed structural conformation. However, the chimera could be shifted to synaptic vesicles by deletion of amino acids 61-70 in synaptobrevin, suggesting that separate signals encode the localization of synaptobrevin to the synapse and to the synaptic vesicle.  相似文献   

17.
We applied the perforated-patch-clamp technique to cultured cortical neurons of the rat to characterize the ionic basis of membrane potential changes and membrane currents induced by gamma-aminobutyric acid (GABA). Gramicidin was used as the membrane-perforating agent, to allow the recording of whole-cell currents without impairing the intracellular Cl- concentration ([Cl-]i). In current-clamp experiments in the presence of 26 mM HCO3- the application of 50 microM GABA evoked changes in the membrane potential of neurons including depolarizations (19%), hyperpolarizations (38%) and biphasic changes in membrane potential (31%), characterized by a transient hyperpolarization followed by a sustained depolarization. Accordingly, GABA (50-200 microM) induced inward, outward or biphasic current responses under voltage-clamp. Inward and biphasic currents as well as depolarizations and biphasic membrane potential responses, respectively, occurred more frequently in the presence of 26 mM HCO3-. The second phase of the biphasic membrane potential or current responses was markedly reduced when the preparation was bathed in a HCO3--free saline, indicating a contribution from HCO3-. The reversal potential of the GABA-induced currents (EGABA) determined with the gramicidin-perforated-patch mode and in the nominal absence of HCO3- was -73 mV, while it was shifted to -59 mV in the presence of HCO3-. Combined patch-clamp and microfluorimetric measurements using the Cl--sensitive dye 6-methoxy-1-(3-sulphonatopropyl)quinolinium (SPQ) showed that GABA evoked an increase of [Cl-]i in 54% (n=13) of the neurons. We conclude that this increase of [Cl-]i in combination with the efflux of HCO3- results in a shift of EGABA above the resting membrane potential that gives rise to GABA-mediated depolarizations.  相似文献   

18.
Whereas GABA is a major inhibitory neurotransmitter in the adult central nervous system, recent experiments performed in our laboratory have shown that the activation of GABAA receptors in the hippocampus leads to excitatory effects during the early post-natal period. The possible consequence of a depolarizing effect of GABA was assessed on the neuritic outgrowth of embryonic hippocampal neurons in culture. No morphological alterations were observed when hippocampal neurons were cultured for three days in the presence of muscimol, a GABAA receptor agonist. In contrast, the neuritic outgrowth of cultured hippocampal neurons was profoundly affected by the presence of bicuculline in the culture medium. In the presence of this GABAA receptor antagonist neurons displayed a reduction in the number of primary neurites and branching points, resulting in a concomitant decrease of the total neuritic length. Thus, this study suggests that GABA, acting on GABAA subtype of receptors, is able to affect the development of the hippocampus.  相似文献   

19.
In cultures of dissociated rat hippocampal neurons, persistent potentiation and depression of glutamatergic synapses were induced by correlated spiking of presynaptic and postsynaptic neurons. The relative timing between the presynaptic and postsynaptic spiking determined the direction and the extent of synaptic changes. Repetitive postsynaptic spiking within a time window of 20 msec after presynaptic activation resulted in long-term potentiation (LTP), whereas postsynaptic spiking within a window of 20 msec before the repetitive presynaptic activation led to long-term depression (LTD). Significant LTP occurred only at synapses with relatively low initial strength, whereas the extent of LTD did not show obvious dependence on the initial synaptic strength. Both LTP and LTD depended on the activation of NMDA receptors and were absent in cases in which the postsynaptic neurons were GABAergic in nature. Blockade of L-type calcium channels with nimodipine abolished the induction of LTD and reduced the extent of LTP. These results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb's rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.  相似文献   

20.
目的:观察异丙酚对大鼠海马锥体神经元低电压激活钙电流[low-voltage-activated calcium currents,ICa(LVA)]的影响.方法:培养Wistar大鼠海马锥体神经元,采用全细胞膜片钳技术测定ICa(LVA).加用不同浓度(3、10、30、100、300μmol/L)异丙酚后,计算ICa(LVA)抑制率,建立异丙酚的浓度-效应曲线,选择20μmol/L异丙酚作ICa(LVA)的激活及失活曲线.结果:3 μmol/L的异丙酚对ICa(LVA)的电流幅度无影响;10、30、100、300 μmol/L的异丙酚对ICa(LVA)的电流幅度抑制率分别为(12.6±4.1)%、(29.2±5.7)%、(36.6±5.3)%、(31.6±2.6)%.拟合后的浓度-效应曲线的IC50为16.8 μmol/L,Hill系数为0.15.激活曲线的半数最大激活膜电位(V1/2)由(-10±1)mV移动到(-11±2)mV;K分别为12±1和8±1;失活曲线的V1/2分别为(-25±1)mV和(-25±5)mV,K分别为15±1和16±3.20 μmol/L异丙酚均未使ICa(LVA)的激活曲线及稳态失活曲线发生明显移动.结论:异丙酚对ICa(LVA)通道有抑制作用,异丙酚对中枢神经系统的麻醉作用可能与ICa(LVA)抑制有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号