首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The vertebrate brain has the machinery to transport arginine and ornithine, and to form within nerve endings from these amino acids glutamate and GABA, the major excitatory and inhibitory neurotransmitters. Ornithine aminotransferase is a key enzyme of the Arg-->Orn-->Glu-->GABA pathway; the physiological significance of this pathway is still unclear. With 5-fluoromethylornithine, a selective inactivator of ornithine aminotransferase, a tool is in our hands that allows us to study biochemical and behavioral consequences of elevated tissue ornithine concentrations. Increase of the rate of hepatic urea formation, and of ornithine decarboxylation are the most important changes in vertebrates following inactivation of ornithine aminotransferase. Administration of 5-fluoromethylornithine prevented the accumulation of lethal concentrations of ammonia in brain, and ameliorated pathological consequences of thioacetamide intoxication. Inhibition of ornithine catabolism has, therefore, potentials in the therapy of those hyperammonemic states which are characterized by a conditional deficiency of ornithine. The enhancement of polyamine formation due to elevated ornithine concentrations may allow us to favorably affect tissue regeneration following injury.  相似文献   

2.
Gel retardation experiments indicated the presence in Pseudomonas aeruginosa cell extracts of an arginine-inducible DNA-binding protein that interacts with the control regions for the car and argF operons, encoding carbamoylphosphate synthetase and anabolic ornithine carbamoyltransferase, respectively. Both enzymes are required for arginine biosynthesis. The use of a combination of transposon mutagenesis and arginine hydroxamate selection led to the isolation of a regulatory mutant that was impaired in the formation of the DNA-binding protein and in which the expression of an argF::lacZ fusion was not controlled by arginine. Experiments with various subclones led to the conclusion that the insertion affected the expression of an arginine regulatory gene, argR, that encodes a polypeptide with significant homology to the AraC/XylS family of regulatory proteins. Determination of the nucleotide sequence of the flanking regions showed that argR is the sixth and terminal gene of an operon for transport of arginine. The argR gene was inactivated by gene replacement, using a gentamicin cassette. Inactivation of argR abolished arginine control of the biosynthetic enzymes encoded by the car and argF operons. Furthermore, argR inactivation abolished the induction of several enzymes of the arginine succinyltransferase pathway, which is considered the major route for arginine catabolism under aerobic conditions. Consistent with this finding and unlike the parent strain, the argR::Gm derivative was unable to utilize arginine or ornithine as the sole carbon source. The combined data indicate a major role for ArgR in the control of arginine biosynthesis and aerobic catabolism.  相似文献   

3.
The goal of this work was to construct Escherichia coli strains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. coli strains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33-38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain "arg boxes," which titrate the ArgR repressor protein, with or without the E. coli carAB genes encoding carbamyl phosphate synthetase and the argI gene for ornithine transcarbamylase. The free arginine production rates of "arg-derepressed" E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt) argA. The expression system with fbr argA produced 7- to 35-fold more arginine than a system overexpressing carAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5 alpha strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carAB and argI genes. Plasmids containing wt or fbr argA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.  相似文献   

4.
Pasteurella multocida was examined for glucose and mannose transport. P. multocida was shown to possess a phosphoenolpyruvate (PEP):mannose phosphotransferase system (PTS) that transports glucose as well as mannose and was functionally similar to the Escherichia coli mannose PTS. Phosphorylated proteins with molecular masses similar to those of E. coli mannose PTS proteins were visualized when incubated with 32P-PEP. The presence of an enzyme IIAGlc which could play an important role in regulation, as described in other Gram-negative bacteria, was detected. The enzymes of the pentose-phosphate pathway were present in P. multocida growth on glucose. The activity of 6-phosphofructokinase (the key enzyme of the Embden-Meyerhof pathway (EMP)), was very low in cell extracts, suggesting that EMP is not the major pathway for glucose catabolism.  相似文献   

5.
From sequence alignments, two groups can be defined for the carbenicillin-hydrolysing beta-lactamases (CARB enzymes). One group includes the Pseudomonas-specific enzymes PSE-1, PSE-4, CARB-3, CARB-4 and also the Proteus mirabilis GN79, for which the well-conserved residue Lys 234 in all class-A beta-lactamases is changed to an arginine residue. The second group includes the enzymes PSE-3 and AER-1 which have an arginine or a lysine residue at position 165. All these enzymes also have leucine at position 68, threonine at position 104 and glycine at position 240. We engineered these mutations into the TEM-1 beta-lactamase to study their potential role in defining the substrate profile of the CARB enzymes. The mutations K234R and E240G in TEM-1 noticeably increased the hydrolysis of carboxypenicillins relative to other penicillins by approximately sixfold and twofold, respectively. The variant E240G also demonstrated an improved rate of second-generation cephalosporin and cefotaxime hydrolysis. In contrast, the substitution of Trp165 by arginine does not extend the substrate profile to alpha-carboxypenicillins nor does it noticeably modify the kinetic behavior of the enzyme. The mutations M68L and E104T do not have a large effect on the hydrolysis rate but the mutation E104T enhances the affinity of the enzyme for third-generation cephalosporins. As the mutation K234R resulted in a severe decrease in the affinity for carboxypenicillins, the double mutant E240G/K234R was constructed in an attempt to enhance the CARB character of the enzyme. Contrary to what could be expected, the additional mutation E240G for the TEM-1 K234R enzyme increases neither the catalytic constant for the carboxypenicillins nor the affinity towards these substrates. Consequently, this study strongly suggests that the three-dimensional structures of the active site of the TEM-1 enzyme and PSE-3, PSE-4 or other related enzymes are significantly different. This probably explains the discrepancy of the substrate profile between the CARB enzymes and the TEM-1 protein variants.  相似文献   

6.
In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787-1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.  相似文献   

7.
We have recently reported the synthesis of urea from ammonia, glutamine and arginine in enterocytes of postweaning pigs. The present study was conducted to determine the compartmentation and kinetics of urea cycle enzymes in these cells. Carbamoyl phosphate synthase I (CPS I) and ornithine carbamoyltransferase (OCT) were located exclusively in mitochondria, whereas argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) were found in the cytosol. Arginase isozymes were present in both the cytosol and mitochondria of enterocytes, and differed in their sensitivity to heat inactivation. Except for OCT, Vmax values of urea cycle enzymes were much lower in enterocytes than in the liver of pigs, and vice versa for their Km values. Because of a low rate of ureagenesis in enterocytes compared with the liver, intestinal urea cycle enzymes may function primarily to synthesize citrulline. The co-localization of CPS I and OCT and a high activity of OCT in enterocyte mitochondria favors the intestinal synthesis of citrulline from ammonia, HCO3- and ornithine. Low activities of cytosolic ASS and ASL minimize the conversion of citrulline into arginine and therefore, the recycling of citrulline into ornithine via arginase in postweaning-pig enterocytes. These kinetic properties of intestinal urea cycle enzymes maximize the net synthesis of citrulline from glutamine and explain the release of large amounts of citrulline by the pig small intestine. The two compartmentally separated arginase isozymes in enterocytes may play an important role in regulating the intestinal metabolism of proline, nitric oxide and polyamines.  相似文献   

8.
9.
10.
High-level expression of the hisHAFI genes in Escherichia coli, cloned under the control of an IPTG-inducible promoter, caused filamentation, as previously reported in Salmonella typhimurium. We speculated that this filamentation might be produced by an action of the HisH and HisF enzymes on their product AICAR (amino-imidazole carboxamide riboside 5'-phosphate), a histidine by-product and normal purine precursor, possibly by favouring the formation of ZTP, the triphosphate derivative of AICAR. However, filamentation occurred even in the absence of carbon flow through the histidine and purine pathways, as observed in a hisG purF strain lacking the first enzyme in each pathway. Filamentation thus does not require either the normal substrate or products of the overproduced histidine enzymes and must reflect another activity.  相似文献   

11.
All known Mn-containing superoxide dismutases (MnSODs) have a highly conserved histidine (His-30 in Escherichia coli FeSOD) in the active-site channel, and nearly all have an active-site arginine (Arg-170) that has been proposed to play a combined structural and functional role [Chan et al., Arch. Biochem. Biophys. 279, 195-201 (1990)]. In Saccharomyces cerevisiae MnSOD, the active-site arginine is replaced by a lysine. The S. cerevisiae MnSOD gene has been cloned and expressed in E. coli, and H30A and K170R site-specific mutants have been prepared. The purified recombinant native (RN) and mutant enzymes were compared to one another and to the native enzyme purified from S. cerevisiae (SC) in terms of activity, temperature stability, and sensitivity to 2,4,6-trinitrobenzenesulfonate (TNBS) and phenylglyoxal (PG). All enzymes had high specific activities (SC = 5000, RN = 5600, H30A = 4500, K170R = 4600) (U/mg, using the pyrogallol assay). SC, RN, and H30A were very stable at 75 degreesC (pH 8.0), with half-lives of 4.7, 2.8, and 2.7 h, respectively, while K170R had a much greater temperature lability, with a half-life of 0.36 h under these conditions. TNBS (0.5 mM, pH 9.0, 25 degreesC) rapidly inactivated SC, RN, and H30A, with half-lives of 3. 5, 5.1, and 5.5 min, respectively, but only slowly inactivated K170R, with a half-life of 101 min. PG (20 mM, pH 9.0, 25 degreesC) caused very slow inactivation of SC, RN, and H30A by biphasic kinetics, and each enzyme retained >/=25% activity after 3 h of modification. K170R, on the other hand, was completely inactivated by PG under these conditions by first-order kinetics, with a half-life of 7.0 min. The data suggest that His-30, a residue highly conserved in the active-site channel of MnSODs and FeSODs, does not play a crucial role in catalysis or stability. In addition, Lys-170, a residue that is almost always arginine in the numerous other MnSODs and FeSODs sequenced to date, can be replaced by arginine with no loss of catalytic activity, but K170R is less stable and Arg-170 in this mutant is more exposed than the corresponding arginine in other SODs. RN and SC showed some surprising differences. Thus, while the specific activities of RN and SC are very similar, SC is more stable to inactivation at 75 degreesC, and less susceptible to inactivation by phenylglyoxal, than RN. These data suggest that there may be slight differences in the tertiary structures of SC, the native enzyme expressed in S. cerevisiae, and RN, the recombinant native enzyme expressed in E. coli.  相似文献   

12.
Chemical modification of E. coli d-glyceraldehyde-3-phosphate dehydrogenase by an arginine-specific reagent, 2,3-butanedione, stabilized the tetrametric enzyme in an asymmetric state, with only two of the four active centers able to catalyze oxidative phosphorylation of D-glyceraldehyde-3-phosphate. The catalytically incompetent active centers retain the capacity of binding NAD+, forming charge transfer complex, and be alkylated by iodoacetamide. Analogous results have been previously obtained with the rabbit muscle D-glyceraldehyde dehydrogenase modified at a single arginine residue per subunit (Kuzminskaya, E.V., Asryants, R.A., and Nagradova, N.K. (1991) Biochim. Biophys. Acta 1075, 123-130), the only differences being inaccessibility of the catalytically incompetent pair of active centers to the alkylating reagent, on one hand, and lower residual activity exhibited by the functioning active centers (3-4%), on the other. In the case of E. coli enzyme, activity loss upon arginine modification never exceeded 80-82%. These results are consistent with the idea that the two enzymes share common principles of the protein design, but differ in the peculiarities of their active centers conformations. An improved method for D-glyceraldehyde-3-phosphate dehydrogenase purification from a wild type E. coli strain is described.  相似文献   

13.
A linked-function analysis of the allosteric responsiveness of carbamoyl phosphate synthetase (CPS) from E. coli was performed by following the ATP synthesis reaction at low carbamoyl phosphate concentration. All three allosteric ligands, ornithine, UMP, and IMP, act by modifying the affinity of CPS for the substrate MgADP. Individually ornithine strongly promotes, and UMP strongly antagonizes, the binding of MgADP. IMP causes only a slight inhibition at 25 degreesC. When both ornithine and UMP were varied, models which presume a mutually exclusive binding relationship between these ligands do not fit the data as well as does one which allows both ligands (and substrate) to bind simultaneously. The same result was obtained with ornithine and IMP. By contrast, the actions of UMP and IMP together must be explained with a competitive model, consistent with previous reports that UMP and IMP bind to the same site. When ornithine is bound to the enzyme, its activation dominates the effects when either UMP or IMP is also bound. The relationship of this observation to the structure of CPS is discussed.  相似文献   

14.
15.
BACKGROUND: Purine nucleoside phosphorylase (PNP) from Escherichia coli is a hexameric enzyme that catalyzes the reversible phosphorolysis of 6-amino and 6-oxopurine (2'-deoxy)ribonucleosides to the free base and (2'-deoxy)ribose-1-phosphate. In contrast, human and bovine PNPs are trimeric and accept only 6-oxopurine nucleosides as substrates. The difference in the specificities of these two enzymes has been utilized in gene therapy treatments in which certain prodrugs are cleaved by E. coli PNP but not the human enzyme. The trimeric and hexameric PNPs show no similarity in amino acid sequence, even though they catalyze the same basic chemical reaction. Structural comparison of the active sites of mammalian and E. coli PNPs would provide an improved basis for the design of potential prodrugs that are specific for E. coli PNP. RESULTS: The crystal structure of E. coli PNP at 2.0 A resolution shows that the overall subunit topology and active-site location within the subunit are similar to those of the subunits from human PNP and E. coli uridine phosphorylase. Nevertheless, even though the overall geometry of the E. coli PNP active site is similar to human PNP, the active-site residues and subunit interactions are strikingly different. In E. coli PNP, the purine- and ribose-binding sites are generally hydrophobic, although a histidine residue from an adjacent subunit probably forms a hydrogen bond with a hydroxyl group of the sugar. The phosphate-binding site probably consists of two main-chain nitrogen atoms and three arginine residues. In addition, the active site in hexameric PNP is much more accessible than in trimeric PNP. CONCLUSIONS: The structures of human and E. coli PNP define two possible classes of nucleoside phosphorylase, and help to explain the differences in specificity and efficiency between trimeric and hexameric PNPs. This structural data may be useful in designing prodrugs that can be activated by E. coli PNP but not the human enzyme.  相似文献   

16.
17.
We have previously used Aspergillus nidulans as a fungal model for human phenylalanine catabolism. This model was crucial for our characterization of the human gene involved in alcaptonuria. We use here an identical approach to characterize at the cDNA level the human gene for maleylacetoacetate isomerase (MAAI, EC 5.2.1.2), the only as yet unidentified structural gene of the phenylalanine catabolic pathway. We report here the first characterization of a gene encoding a MAAI enzyme from any organism, the A. nidulans maiA gene. maiA disruption prevents growth on phenylalanine (Phe) and phenylacetate and results in the absence of MAAI activity in vitro and Phe toxicity. The MaiA protein shows strong amino acid sequence identity to glutathione S-transferases and has MAAI activity when expressed in Escherichia coli. maiA is clustered with fahA and hmgA, the genes encoding the two other enzymes of the common part of the Phe/phenylacetate pathways. Based on the high amino acid sequence conservation existing between other homologous A. nidulans and human enzymes of this pathway, we used the MaiA sequence in data base searches to identify human expressed sequence tags encoding its putative homologues. Four such cDNAs were sequenced and shown to be encoded by the same gene. They encode a protein with 45% sequence identity to MaiA, which showed MAAI activity when expressed in E. coli. Human MAAI deficiency would presumably cause tyrosinemia that would be characterized by the absence of succinylacetone, the diagnostic compound resulting from fumarylacetoacetate hydrolase deficiency in humans and fungi. Culture supernatants of an A. nidulans strain disrupted for maiA are succinylacetone-negative but specifically contain cis and/or trans isomers of 2, 4-dioxohept-2-enoic acid. We suggest that this compound(s) might be diagnostic for human MAAI deficiency.  相似文献   

18.
A 3-year-old boy with hyperdibasicaminoaciduria and hyperammonemia showed characteristics of familial protein intolerance (FPI). Oral loading tests of lysine and arginine disclosed a remarkably reduced capability for intestinal absorption of these amino acids. Because urinary excretion and renal clearance of dibasic amino acids were only moderately elevated in the patient, the conspicuously decreased serum concentration of lysine, arginine, and ornithine was attributed to the defect in internal absorption. A possible explanation for elevated blood ammonia levels in FPI is that it is due to a deficiency of arginine and ornithine in the urea cycle that in turn results from a severe impairment in absorption of the amino acids by the gut mucosa.  相似文献   

19.
Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号