首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A series of sculptured porous nano-columnar titanium oxide films were prepared by glancing angle deposition (GLAD) method using an electron-beam evaporation system. The films were deposited on ITO glasses at various incident angles from 53° to 86°and used as photoanode in a dye-sensitized solar cell (DSSC). The as-deposited TiO2 films are comprised of helical nano-columns and assembled in an orderly manner with gaps or pores in between. The porous nanostructured films provide a synergetic effect of high surface area, effective route for electron transfer, tight interfaces, and enhanced light trapping, which are all beneficial for higher cell efficiency. The DSSCs incorporated with the GLAD films of 4 μm thick exhibited a high fill factor (FF) up to 0.77. The TiO2 film deposited at an incident angle of 73° provides the largest internal surface area and the largest amount of dye absorption and results in the highest light conversion efficiency of 2.78%.  相似文献   

2.
M.C. Kao  H.Z. Chen 《Thin solid films》2009,517(17):5096-2818
Nanocrystalline anatase TiO2 thin films with different thicknesses (0.5-2.0 μm) have been deposited on ITO-coated glass substrates by a sol-gel method and rapid thermal annealing for application as the work electrode for dye-sensitized solar cells (DSSC). From the results, the increases in thickness of TiO2 films can increase adsorption of the N3 dye through TiO2 layers to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc of DSSC with a TiO2 film thickness of 2.0 μm (8.5 mA/cm2 and 0.61 V) are smaller than those of DSSC with a TiO2 film thickness of 1.5 μm (9.2 mA/cm2 and 0.62 V). It could be due to the fact that the increased thickness of TiO2 thin films also resulted in a decrease in the transmittance of TiO2 thin films thus reducing the incident light intensity on the N3 dye. An optimum power conversion efficiency (η) of 2.9% was obtained in a DSSC with the TiO2 film thickness of 1.5 μm.  相似文献   

3.
Dye-sensitized solar cells (DSSC) are based on the concept of photosensitization of wide-band-gap mesoporous oxide semiconductors. At present, DSSC have ventured into advanced development and pilot production. Our current research emphasizes on improvements on titanium dioxide (TiO2) photosensitivity under visible light irradiation by using metal plasma ion implantation (MPII). The anatase TiO2 electrode was prepared via a sol-gel process and deposited onto indium-tin oxide glass substrates. Subsequently, the as-deposited TiO2 films were subjected to MPII at 20 keV in order to incorporate ruthenium (Ru) atoms onto the TiO2 surface layer. The Ru-implanted TiO2 thin film possessed nanocrystalline Ru clusters of 20 nm in diameter and distributed in near surface layer of TiO2 films. The Ru clusters showed effective in both prohibiting electron-hole recombination and generating additional Ru-O impurity levels for the TiO2 band gap structure. A significant reduction of TiO2 band gap energy from 3.22 to 3.11 eV was achieved, which resulted in the extension of photocatalysis of TiO2 from UV to Vis regime. A small drop of photoelectric performance of 8% was obtained due to the incorporation of Ru atoms in the surface layer of TiO2, a similar side effect as observed in the Fe-implanted TiO2. However, the overall retention of the photocatalysis capability is as high as 92% when switch from UV to Vis irradiation. The improvement of the photosensitivity of TiO2 DSSC by means of metal plasma ion implantation is promising.  相似文献   

4.
A meso-macroporous TiO2 film electrode was fabricated by using mesoporous TiO2 (m-TiO2) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption–desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.  相似文献   

5.
T. Yuji  N. Mungkung  Y.M. Sung 《Vacuum》2008,83(1):124-127
In this paper, we report the utilization of the DC pulse discharge plasma jet technique as a means for the preparation of titanium oxide (TiO2) films on fluorine dope tin oxide (FTO) coated glass substrates used for dye-sensitized solar cells (DSCs). The TiO2 film made on these experimental bases exhibited the BET specific surface area of 95 m2/g, the pore volume of 0.3 cm2/g and the TEM particle size of ∼25 nm. The DSCs made by the TiO2 film exhibited an energy conversion efficiency of 5.7% at 100 mW/cm2 light intensity. Consequently, we believe that the optimization between the specific surface area and photocurrent density of TiO2 film was achieved by the plasma surface treatment which also contributed to the improvement of energy conversion efficiency of DSCs.  相似文献   

6.
K.Y. Chun  Y.M. Sung  Y.T. Hyun 《Thin solid films》2009,517(14):4196-4198
Self-aligned TiO2 nanotube arrays (20 μm in length) were fabricated by anodic oxidation of Ti-grid with a thickness of 100 μm in an ethylene glycol electrolyte with an addition of H2O (1.5 vol.%) and NH4F (0.2 wt.%). Voltage applied between Ti and Pt cathodes is 60 V at ~ 22 °C. Dye-sensitized solar cell utilizing photoanode structure of TiO2-nanotube/Ti-grid was fabricated with no transparent conducting oxide (TCO) layer, in which Ti-grid replaces TCO. Overall photoconversion efficiency is very low (< 0.5%) due to the large pore size (100 nm in diameter) of the nanotubes, which may cause insufficient dye molecules to be attached, thus limiting light harvesting.  相似文献   

7.
Sculptured porous titania films as photoanode in dye-sensitized solar cell (DSSC) were prepared using an electron-beam evaporation system with glancing angle deposition (GLAD) method. By controlling the substrate rotation rate and the incident angle of evaporant, titania films of various thicknesses were prepared on ITO glasses. The as-deposited nano-porous films are comprised of helical nano-columns and assembled in an orderly manner with gaps or pores in between, which offer large internal surface area for dye adsorption and direct electron transfer path. There is a positive correlation between the film thickness, film effective surface area, amount of absorbed dye and cell efficiency. The nano-porous films provide a synergistic effect of high surface area, effective route for electron transfer, tight interfaces, and enhanced light trapping, which are all beneficial for higher cell efficiency. The DSSC consisting of a 6 μm titania film, deposited at substrate rotating rate 0.17 rpm and incident angle 73°, gave a cell efficiency of 6.1%.  相似文献   

8.
Youl-Moon Sung 《Thin solid films》2007,515(12):4996-4999
Sputter deposition followed by surface treatment was studied using reactive RF plasma as a method for preparing titanium oxide (TiO2) films on indium tin oxide (ITO) coated glass substrate for dye-sensitized solar cells (DSCs). Anatase structure TiO2 films deposited by reactive RF magnetron sputtering under the conditions of Ar/O2(5%) mixtures, RF power of 600 W and substrate temperature of 400 °C were surface-treated by inductive coupled plasma (ICP) with Ar/O2 mixtures at substrate temperature of 400 °C, and thus the films were applied to the DSCs. The TiO2 films made on these experimental bases exhibited the BET specific surface area of 95 m2/g, the pore volume of 0.3 cm2/g and the TEM particle size of ∼ 25 nm. The DSCs made of this TiO2 material exhibited an energy conversion efficiency of about 2.25% at 100 mW/cm2 light intensity.  相似文献   

9.
Nano-porous TiO2 films, which can be applied to the flexible dye-sensitized solar cell (DSC), were deposited by vacuum cold spraying at room temperature with the strengthened nanostructured TiO2 powder as feedstock. The spraying was conducted under different accelerating gas flows resulting in various particle velocities. Results show that the short-circuit photocurrent density of the cell (N719 dye) increases from 8.3 to 9.8 mA/cm2 with the increase in gas flow from 3 to 7.5 L/min. A maximum overall energy conversion efficiency of 4.2% was obtained for the DSC with the TiO2 film deposited at the gas flow of 7.5 L/min. The influence of particle velocity on the electron transport parameters and cell performance was discussed to reveal the important role of particle velocity in the formation of particle connection through high impact pressure during vacuum cold spraying.  相似文献   

10.
Absorption of photon in wide wavelength region is an important requirement for the enhancement of photoconversion efficiency of dye-sensitized solar cells (DSSC). Lack of photon absorption from visible to NIR wavelength region by a single dye requires the use of plural dyes for the panchromatic sensitization of nanoporous TiO2. To our incredible surprise, when a dye cocktail of organic dye NK3705 and inorganic ruthenium based dye Z907 was implied for the dye adsorption, it led to the formation of dye double layer in spite of random arrangement of two dyes as evidenced from confocal laser microscopic investigations. Investigation pertaining to the evaluation of rate of dye adsorption and dye desorption for different organic and inorganic sensitizing dyes suggests that a combination of one dye with faster diffusion along with weak binding on TiO2 surface and another dye with slow diffusion along with strong binding leads to the formation of dye double layer from a dye mixture by a simple dipping process.  相似文献   

11.
Poly(3,4-ethylenedioxxythiophene) (PEDOT), polyaniline (PANI) and polythiophene (PTh) based multi-walled carbon nanotube (MWCNT) composites were successfully prepared using RF-rotating plasma grafting method. Morphological characterizations of composites were determined using scanning electron microscopy (SEM), which showed that conducting polymers (CPs) of PEDOT, PANI and PTh were coated on the surface of CNTs. The surface properties of the Carbon Nanotube (CNT) composites were also determined by using Infrared Spectra (FT-IR), X-ray Photon Spectra (XPS), and Scanning Electron Microscopy-Energy Dispersive X-ray Spectra (SEM-EDX) analysis. X-ray photon spectra results confirmed the formation of the composites. Composites of MWCNT were used in dye-sensitized solar cells (DSSCs) as counter electrodes and exhibited short-circuit photocurrent densities of 11.19, 10.70 and 8.54 mA/cm2 for PANI/MWCNT, PTh/MWCNT and PEDOT/CNT, respectively.  相似文献   

12.
The absorption coefficients of N719 or N3 dyes at the longer wavelength region (>600 nm) are not enough to catch photons efficiently, but the solar spectrum has a large photon flux in the wavelength region between 500 and 1,000 nm, so it is desirable to enhance the absorption of light by the dye-sensitized solar cells (DSSC) to achieve higher efficiencies. To solve this problem, an improved structure of DSSC for enhancing light absorption is introduced in this paper, and I–V characteristics of DSSC are measured to illustrate the enhancement of the light absorption and efficiency. As a result, the improved DSSC exhibits higher light absorption and solar-to-electric conversion efficiency than traditional DSSC. Translated from Journal of Functional Materials, 2006, 37(10): 1,584–1,586 (in Chinese)  相似文献   

13.
This paper describes a simple method utilizing electrophoretic deposition (EPD) to quickly synthesize hydrogen titanate nanoribbon films. The subsequent heating of the hydrogen titanate nanoribbon films causes the dehydration of interlayered OH groups, thereby leading to TiO2-B nanoribbon films. Thick, uniform TiO2-B nanoribbon films were obtained from prepared alkali suspensions. The crystal structure of the hydrogen titanate and TiO2-B nanoribbon films obtained from EPD underwent analysis by X-ray diffraction and high-resolution transmission electron microscope. EPD controlled the thickness of TiO2-B nanoribbons films. TiO2-B-coated fluorine-doped tin oxide films were dye-sensitized with N3 and used as a photoanode in an electrochemical solar cell. The solar cell yielded conversion efficiencies of 0.87% for an incident solar energy of 100 mW/cm2.  相似文献   

14.
K. Prabakar 《Thin solid films》2010,519(2):894-899
Visible light enhanced nitrogen-sulfur (N-S) doped titanium dioxide (TiO2) thin films were prepared by the sol-gel method using thiourea as a dopant. The physical and chemical properties of the TiO2 thin films were greatly influenced by the amount of thiourea added to the sol-gel solution. The greatest shift to longer wavelengths for visible light absorption was observed with 0.6 g of thiourea in the precursor solution, while 0.4 g yielded the largest particle sizes. These single-cycle dip-deposited N-S doped TiO2 thin films were used as visible light harvesters as well as blocking layers in dye sensitized solar cells. When deposited directly on conducting fluorine doped tin oxide electrodes, photo-conversion efficiencies were reduced. However, the opposite configuration, with N-S doped thin films on top of nanoporous TiO2, yielded an increased open-circuit voltage of 0.84 V, a short-circuit current density of 9.86 mA cm−2, and an overall conversion efficiency of 5.88% greater than that of a standard cell. The effectiveness of the blocking layer on the cell efficiencies was analyzed by electrochemical impedance spectroscopy.  相似文献   

15.
采用双极脉冲磁控溅射法制备氮掺杂碳膜并作为对电极应用在染料敏化太阳能电池(DSSC)中。研究了氮掺杂对碳膜的结构与性能的影响。用X射线光电子能谱(XPS)对氮掺杂碳膜进行薄膜表面元素分析,用四探针测试仪对氮掺杂碳膜的方块电阻进行测试,用扫描电镜对氮掺杂碳膜表面形貌进行分析。组装电池,用太阳光模拟器测试电池的光电转化率。研究结果表明,经过氮掺杂的碳膜,表面形貌致密,当N2的体积分数为30%时,薄膜中N元素含量为15.21%,薄膜的方块电阻为9.4Ω/□,电池的光电转化率为1.16%。  相似文献   

16.
以大孔径的介孔炭(MC)为催化层材料经低温热处理构建出炭对电极,着重探讨了在炭浆料中添加Triton X100对其组装的染料敏化太阳电池(DSCs)光电性能的影响,并引入分形维数(DF)用于定量评估炭膜形貌的差异。结果表明,当炭浆料中Triton X100的含量增加到0.1 mL(相应MC含量为0.6 g)时,DSCs的光电转换效率增加至5.65%,其值比活性炭对电极DSCs高46.5%,且达到Pt对电极DSCs的95.4%。Triton X100改性的介孔炭对电极的高性能归功于高品质的炭膜和介孔炭本身合理的孔结构(如大尺寸孔径和大比表面积等)。相对于未添加Triton X100的纯介孔炭对电极,Triton X100改性的介孔炭对电极具有分布更均匀的炭膜和更小的分形维数,是对电极欧姆串阻减小及相应器件效率改善的一个重要因素。  相似文献   

17.
We present an improved efficiency of polymer solar cell by incorporating single-wall carbon nanotubes (SWCNTs). A power conversion efficiency of 2.66% was achieved for the device with 0.125 wt% SWCNTs, which is 16% improvement over control device without SWCNTs, primarily due to the increase in the photocurrent and fill factor. The results reveal that SWCNTs serve as effective and additional electron pathways, facilitating the electron transport and improving the interface contact between active layer and electrode. The improved contact area was evidenced by the increased root-mean-square surface roughness as SWCNTs concentration increases. However, the increased peak-to-valley value also indicates the possibility of short circuit in device, thus the concentration of SWCNTs has to be optimized.  相似文献   

18.
Ultrapure TiO2 nanoparticles (∼5 nm in size) were supported on “inert” BaTiO3 films by TiCl4 treatment, which was used to fabricate dye-sensitized solar cells (DSSCs). The optimized electrode, designated as BaTiO3/TiO2(4), was obtained upon four cycles of TiCl4 treatment. DSSC with BaTiO3/TiO2(4) electrode exhibits superior power conversion efficiency (PCE) compared to that with conventional anatase TiO2 (∼25 nm in size) electrode. The interfacial charge recombination kinetics was investigated by electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). In contrast to DSSC with anatase TiO2 electrode, the dramatically enhanced electron lifetime for DSSC with BaTiO3/TiO2(4) electrode could be attributed to the decrease of recombination reaction at the TiO2 photoelectrode/electrolyte interface. It is proposed that the lower interfacial charge recombination can be related to the relatively shallower trap distributions in DSSC with BaTiO3/TiO2(4) electrode.  相似文献   

19.
Yosuke Saito 《Thin solid films》2010,518(11):3033-13426
Tungsten oxide electrodes were investigated as charge-storage materials for energy-storable dye-sensitized solar cells (ES-DSSCs). The electrochemical and structural properties of the surface-oxidized tungsten (so-WO3 − x) and monoclinic nanocrystalline WO3 (nc-WO3) were studied on the difference of the charge-discharge properties. Although, the electromotive force (EMF) curve of the so-WO3 − x was associated with structural change, the so-WO3 − x did not show the significant structural change indicated by X-ray diffraction (XRD) patterns. On the other hand, the nc-WO3 showed crystal transformation from monoclinic phase to tetragonal phase. The Li+ diffusion coefficients of the so-WO3 − x with different Li+ content ratios obtained by the galvanostatic intermittent titration technique (GITT) did not fall down up to 0.3 of Li/W ratio, whereas the diffusion coefficients of nc-WO3 decreased about two orders of magnitude in the vicinity of phase transitions. The different electrochemical properties could be explained by the less structural change of so-WO3 − x compared with the nc-WO3. The large-sized ES-DSSCs with the so-WO3 − x were fabricated for the first time, and their photocharge-discharge performances were studied.  相似文献   

20.
Arrays of TiO2 nanotubes were fabricated by the anodization of Ti foils and then used in assembling dye-sensitized solar cells (DSSCs). The role of the morphologies of the TiO2 nanotubes in the photovoltaic performances of the DSSCs was studied in terms of the surface topography and the tube length. The necessity of removing the nanoporous films from the surface of the nanotube arrays for good DSSC performance has been demonstrated. Also, it has been shown that appropriately increasing the tube length was an effective measure for enhancing both the short-circuit current density and the conversion efficiency of the DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号