首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 784 毫秒
1.
分布式能源越来越受到人们的重视,但由于分布式能源发电的不稳定性特点,也加大了大电网的波动风险。微电网能够弥补分布式电源的缺点,减轻大量入网对电力系统的影响。由于微电网运行中,负载不断变化导致母线电压波动,因此维持母线电压稳定,将有利于微电网平稳运行。为提高微电网的经济性与可靠性,采用锂蓄电池-超级电容混合储能系统,并针对混合储能系统的直流微电网孤岛运行策略进行研究。根据微电网储能系统、锂蓄电池储能和超级电容器储能等基本原理,针对孤岛运行模式下微电网母线电压波动及储能系统运行性能下降的问题,设计了一种基于混合储能的直流微电网孤岛运行状态下的控制策略。用电压电流双闭环的储能系统控制方式,以DC-DC变换器进行功率分配,锂蓄电池对低频部分功率进行补偿,高频部分功率由超级电容器补偿。同时该混合储能系统能有效减少锂蓄电池充放电变化,避免过充过放现象的发生。通过Matlab/Simulink软件搭建仿真平台进行仿真模拟,证实了所设计的控制策略在稳定母线电压,避免蓄电池频繁充放电及过充过放现象中具有良好的优化作用。  相似文献   

2.
对孤网运行风光互补微电网电压频率控制和混合储能功率分配问题提出了混合储能管理控制策略,该策略将混合储能中锂电池设定恒功率和压频电源两种模式,对超级电容器采用电压/频率控制。锂电池作恒功率电源时,根据发电预测和负荷预测结果平复系统波动;超级电容器则依据电压/频率控制补偿系统实时功率缺额,保障微电网稳定运行。为此在MATLAB/SIMULINK中搭建了仿真模型,进行了孤网运行、能量分析、模式切换三次仿真,结果表明该策略正确。  相似文献   

3.
超级电容器作为储能装置,不但可以为光伏发电系统提供必要的能量缓冲,而且对提高电力系统的运行稳定性具有非常重要的作用。使用PSIM软件仿真分析了系统的运行特性。结果表明,系统在光伏输入功率大幅波动时具有很好的稳定性,为超级电容器应用于可再生能源发电和电能质量改善等领域提供参考。  相似文献   

4.
微电网利用储能系统、微型燃气轮机等能够快速响应负荷和间歇式能源功率变化的可调节资源,平抑风光出力的波动性,提高电源出力和负荷的匹配性,形成能够基本实现内部功率平衡的供电网络,降低间歇式电源并网对电网安全运行造成的影响。蓄电池等能量型储能的能量密度高,但频繁充放电会快速降低电池使用寿命;超级电容等功率型储能的能量密度低,但功率密度高,并且可充放电次数多。研究了微电网中采用蓄电池和超级电容组合的混合储能系统优化配置方法,利用快速傅里叶变换对一个控制周期内的微电网净功率进行频谱分析,确定混合储能系统的输出功率,建立了以混合储能配置成本最小化为目标的优化模型,并采用粒子群算法进行求解,最后通过算例验证该方法的有效性。  相似文献   

5.
随着可再生能源发电技术的发展,能够整合分布式发电系统的微网成为满足日益增长的电力需求、节省投资和提高能源利用率的一种有效途径。储能系统作为微网必要的能量缓冲环节,其作用越来越重要。文章概述了电池储能系统的基本特性,分析了电池储能系统的运行及控制原理,并详细阐述了其在微网中的作用。基于蓄电池的储能系统,不仅能起到能量缓冲的作用,还能提供短时供电、缓冲微网中负荷波动、改善微网电能质量,对提高微网的经济效益具有重要作用。  相似文献   

6.
微电网通常采用储能系统来平抑负载变化引起的直流母线功率波动。文章采用锂电池和超级电容器的混合储能系统(Li-SC HESS)来同时满足因负载变化引起的功率与能量两方面的需求。研究了混合储能系统模型结构,提出了相应的HESS功率协调分配的PCH强跟踪控制方法。结合Simscape在Simulink中建立光储微电网混合储能系统仿真模型,与微电网常规的双闭环线性控制策略进行对比研究。仿真试验结果表明,提出的HESS控制策略可有效减少锂电池充放电次数,平滑其充放电过程,延长使用寿命,进而改善混合储能系统的性能。  相似文献   

7.
储能单元作为可再生能源发电系统中必不可少的组成部分,在抑制功率波动性方面起着重要作用。针对单一储能系统功率或能量上存在的缺陷,根据蓄电池储能系统和超级电容储能系统在能量和功率上的优势,结合二者互补性,提出了面向可再生能源发电系统的互补储能技术,建立了蓄电池—超级电容器互补储能系统,并针对给定发电计划下的功率波动,给出了基于浮动平均法的控制策略。通过相应的实例分析,验证了模型和算法的有效性。  相似文献   

8.
针对小型风力发电系统中风速和负载突变引起的功率波动,采用蓄电池和超级电容器组成混合储能系统进行平抑,为充分利用蓄电池和超级电容器所具有的互补性能,研究了能量管理控制策略。根据风速及负载的变化和超级电容器的荷电状态,控制混合储能装置的工作模式,使风力发电机、蓄电池和超级电容器3个能量源协调工作。为验证能量管理策略的有效性,用Matlab/Simulink进行仿真研究。仿真结果表明:风力发电机输出功率波动且负载突变时,采用混合储能能够减小功率波动对系统的冲击,使蓄电池工作在优化的充放电状态,有助于延长蓄电池使用寿命,加快储能装置响应速度,提高系统能量利用效率。  相似文献   

9.
储能系统可以有效解决微电网中分布式可再生能源特别是风光互补发电的间歇性、波动性以及“源”与“荷”错位的问题。不同储能技术在响应时间、容量规模、技术成熟度及成本等方面各有特点,两种或多种储能技术耦合将可以更有效地满足用电系统的技术性和经济性的要求。针对电力用户对分布式可再生能源的利用情况,本文提出一种由压缩空气储能、锂电池和超级电容器组成的混合储能系统,建立了三种储能的数学模型,针对其不同的特性,提出了基于二次移动平均滤波的储能系统功率分配方法和基于连续性运行的容量优化配置方法。基于某个实际的用户负荷进行了案例分析,得到了混合储能系统的功率和容量配置结果,并分析了其运行特性。研究表明,在分布式可再生能源微电网中,多种储能技术耦合既能充分发挥每种储能的优势,又可以通过相互配合弥补各自的劣势,这对于可再生能源的充分利用和满足用电负荷的严苛需求具有重要的作用和意义,在分布式能源利用领域具有较好的工程应用前景。  相似文献   

10.
储能技术作为微电网中的重要元件,其容量配置的合理性严重影响微电网的运行性能和经济效益。本文主要针对提供短时供电、电力调峰及热备用、分布式电源发电功率平滑等三种用途,提出了根据储能系统在微电网中的主要作用,结合项目对供电可靠性、电能质量的要求以及蓄电池运行状况等,灵活配置电池储能系统容量的优化计算方法,为微电网工程设计提供了理论基础。  相似文献   

11.
为了平抑微电网联络线功率,该文采用磷酸铁锂电池与超级电容组合的方式进行微电网混合储能优化配置。首先,根据电网调度安排,将微电网净负荷分解为联络线功率与混合储能系统总功率。其次,通过集合经验模态分解将混合储能总功率分解为锂电池平抑的低频分量与超级电容平抑的高频分量,并建立混合储能的等年值成本、平抑联络线功率、能量供需平衡目标函数,采用自适应粒子群算法求解混合储能容量。根据储能的荷电状态,采用模糊控制算法对锂电池、超级电容的充放电功率进行二次修正,保证储能系统的长期运行。基于某并网型微电网进行算例分析,仿真验证该方法的经济性与有效性。  相似文献   

12.
风光储互补发电系统能够提高微网系统的稳定性。为了提升微网储能资源的合理配置,文章基于虚拟储能和电力弹簧概念,提出了计及主配储能协同的微网风光储容量双层优化配置方法,并利用改进的粒子群算法对风光储容量双层优化配置方法求解。最后,通过算例分析表明,文章配置方法提高了微网系统调节能力,降低了电压偏移率。  相似文献   

13.
大规模光伏电站的不断接入为电力系统的安全稳定运行带来了巨大挑战。为解决光伏电站出力不确定性所造成的功率波动问题,提高光伏电站在并网点处电压的稳定性,文章采用由蓄电池与超级电容组成的复合储能一体化控制方法,提高光伏并网点电压稳定水平。首先研究由光伏电源、复合储能构成的典型复合储能系统拓扑结构下储能双层优化控制策略;其次,在不同储能介质的荷电状态与充放电特性模型基础上,研究基于不同光伏并网点电压波动场景的多储能介质组合电压波动抑制优化控制模型及其求解算法;最后,以并网光伏电站数据为基础,建立光伏复合储能电压波动优化控制仿真模型。仿真结果及其分析表明,文章所提出的基于复合储能的并网点电压波动抑制模型能够有效提升并网点电压稳定性能。  相似文献   

14.
The features and performance of a hydrogen energy storage system included in the microgrid powering a plant for advanced green technologies is presented. The microgrid is powered by a 730–kW photovoltaic source and four energy storage systems. The hydrogen storage system consists of a water demineralizer, a 22.3–kW alkaline electrolyzer generating hydrogen, its AC–DC power supply, 99.9998% hydrogen purifier, 200-bar compressor, 200–L gas storage cylinders, a 31.5–kW proton–exchange–membrane fuel cell running on hydrogen, its DC–AC power conditioning system. The whole system is housed in three containers provided with anti–salt filters to remove brine. The whole system is controlled by the microgrid system supervisor. Operative tests at nominal power show that the round-trip efficiency of the hydrogen energy storage system at full power is ca. 10% in a pure electric operation and ca. 24% in a heat cogeneration operation. At half power these values reduce to 9.5% and 18%, respectively.  相似文献   

15.
This paper gives a broad overview of a plethora of energy storage technologies available on the large‐scale complimented with their capabilities conducted by a thorough literature survey. According to the capability graphs generated, thermal energy storage, flow batteries, lithium ion, sodium sulphur, compressed air energy storage, and pumped hydro storage are suitable for large‐scale storage in the order of 10's to 100's of MWh; metal air batteries have a high theoretical energy density equivalent to that of gasoline along with being cost efficient; compressed air energy storage has the lowest capital energy cost in comparison to other energy storage technologies; flywheels, super conducting magnetic storage, super capacitors, capacitors, and pumped hydro storage have very low energy density; compressed air energy storage, cryogenic energy storage, thermal energy storage, and batteries have relatively high energy density; high efficiencyin tandem with high energy density results in a cost efficient storage system; and power density pitted against energy density provides a clear demarcation between power and energy applications. This paper also provides a mathematical model for thermal energy storage as a battery. Furthermore, a comprehensive techno‐economic evaluation of the various energy storage technologies would assist in the development of an energy storage technology roadmap. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
讨论了储能技术的分类及应用范围,并对中小型风力发电系统的结构及其系统中储能的作用进行了阐述。同时分析了碳纳米管超级电容器储能、氢储能、超级电容器和蓄电池混合储能三种很有前途储能技术在中小型风力发电系统中的应用。  相似文献   

17.
在微网中配置混合储能并引入需求侧响应机制,有利于提高电网运行时的灵活性,降低分布式电源对电网带来的冲击。针对含风力发电机、光伏、储能的并网型微电网,引入需求侧响应机制,建立了以混合储能全寿命周期净现值、微网购电成本和需求侧响应成本为目标函数的微网混合储能优化配置模型,对混合储能容量进行优化配置,采用改进差分算法求解该模型。结合某地实际微网进行验证,结果表明,混合储能可有效改善分布式电源对微电网的影响,需求侧响应可显著降低混合储能成本,提高微网运行的经济效益,为类似微网混合储能优化配置提供了参考。  相似文献   

18.
为解决天然气输送过程中压力能的浪费问题,提高天然气能源利用率,提出将天然气压力能发电系统引入至微电网整体调度方案中。针对天然气压力能发电系统中前后端口的补热需要,将微电网中的风冷热泵补热系统与压力能发电系统进行耦合。考虑到由天然气管网中流量波动和环境因素造成的压力能出力波动问题,提出微电网储荷一体化协调优化方案,以确保系统高效稳定运行。基于上述内容,构建考虑可控电源出力成本、储能调度成本、微电网与配电网的交互成本和负荷调度成本的微电网优化调度模型,并采用Yalmip工具包编写优化调度程序。最后,通过对西南地区某调压站数据进行仿真,验证该方案的可行性与经济性。  相似文献   

19.
为使微网运行效益最大化,提出一种含风—储系统的独立微网的能量优化策略,该策略采用双层模糊控制方式,针对微网峰谷特性,根据日前启停机计划确定风电机组与需求侧管理负荷的投切状态,对实时调度则使用模糊控制得到风电机组、储能与负荷的功率值。对于微网瞬时功率波动,采用模糊理论,通过蓄电池—需求侧负荷混合系统平抑功率波动。实例应用结果表明,该独立微网能量优化策略有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号