首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过试验研究了Nd:YAG激光 脉冲GMAW复合热源焊接过程中焊接工艺参数对焊缝熔宽的影响.结果表明,复合热源焊缝熔宽随电弧功率和激光功率的增大而增大,随焊接速度的提高而减小,而光丝间距和离焦量对复合热源焊缝熔宽影响相对较小.复合热源焊缝熔宽远大于激光焊缝熔宽而仅稍大于脉冲GMAW焊缝熔宽,说明在复合热源焊接过程中脉冲GMAW决定焊缝熔宽,这主要是由于激光束加热区域远小于电弧加热区域造成的.试验结果的分析比较还表明,在激光 电弧复合热源焊接过程中激光功率的增大还极大地提高了焊接速度.  相似文献   

2.
焊接电流和电弧长度是熔化极气体保护焊(GMAW)焊接过程的主要状态变量,决定了熔滴的过渡过程、热量输入和焊缝成形.文中在分析GAMW焊接工艺过程的基础上,建立了焊接电流和电弧长度的数学模型,采用基于二次型性能指标的直接自适应控制算法,通过调节焊接电源输出电压和送丝速度的大小,使焊接电流和电弧长度能跟踪参考模型的输出.同时,针对实际应用中难以检测的电弧长度,建立了电弧长度估计模型,实现了对电弧长度的软测量.结果表明,该算法可以实现弧长和电流的精确控制.  相似文献   

3.
The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMA W, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.  相似文献   

4.
薛诚  石玗  樊丁  吴亮 《电焊机》2012,42(1):10-13
为了解决镀锌板上锌层易受热烧损,无法使用大电流MIG焊接方法进行高速焊接的问题,采用了一种低热输入高效率的焊接方法——单旁路耦合电弧GMAW(DE-GMAW)用于镀锌板的焊接。搭建了该焊接方法的试验平台,对镀锌板堆焊和搭接接头的高速焊接方法进行试验研究。结果表明,通过调整旁路电流值,单旁路耦合电弧GMAW方法降低了镀锌板上的焊接热输入,并可以在大电流和高焊速的条件下实现镀锌板堆焊和搭接接头的焊接,所得焊缝成形良好,母材变形小,焊接过程稳定无飞溅。焊后镀锌层的烧损与同等热输入条件下的普通MIG焊相比明显降低,保证了镀锌板焊后的耐腐蚀性能。  相似文献   

5.
Abstract

An experimental Al–Cu–Li–Mg–Ag–Zr type alloy in the form of 13.7 mm thick plates was studied for its fusion characteristics using gas metal arc welding (GMAW) and pulsed gas metal arc welding (P-GMAW). High copper 2319 filler of 1.6 mm diameter was used. The burn-off characteristics of 2319 filler wire in GMAW and P-GMAW were experimentally determined, including the relation between pulse current and pulse duration for the desired one-drop detachment per pulse (ODPP) condition and feasible range of pulse parameters. The effect of welding parameters on bead geometry and shape relationships was investigated through beadon-plate experiments in the welding current range above the spray transition current. Reasonably good weld beads were obtained in P-GMAW at currents as low as 194 A and welding speeds of 45 cm min–1. P-GMAW yielded significantly higher weld penetration compared to GMAW.  相似文献   

6.
Implementation of high speed arc welding with DE-GMAW   总被引:2,自引:2,他引:0  
Modern manufacturing industry demands low cost and high efficient welding processes to remain competitiveness in the time of globalization. In this study, conventional gas metal arc welding (GMAW) was modified, a double-electrode GMAW (DE-GMAW) system is developed and DE-GMAW process is implemented through optimization of the design and process parameters and suitable selection of igniting sequence of double arcs. High speed welding tests were carried out to examine the effects of different factors on occurrence of weld formation defects. Through observing the weld bead appearance in DE-GMAW, the values of critical welding speed were determined under different levels of welding current and welding speed.  相似文献   

7.
The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.  相似文献   

8.
GMAW焊高速旋转电弧传感信号特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
电弧传感直接使用焊接电信号进行焊缝跟踪,旋转电弧还可用于改善焊缝成形,具有重要的应用价值.基于气保护熔化极焊接(GMAW)的数学模型以及焊丝端部的运动学模型,对旋转电弧传感的电流信号进行了模拟.在不同焊接参数下进行了焊接试验,采集了电流波形.结果表明,数值模拟结果与实际焊接电流波形吻合.电弧传感电流波形左右半周的不对称性与焊炬偏差成正比.电弧旋转频率越高,电流变化幅度越小.旋转半径越大,电流波形的不对称性越明显.研究结果对于高速旋转电弧传感系统的设计具有指导意义.  相似文献   

9.
The heat input from arcs to weld pool in twin-arc gas metal arc welding (GMAW) with a common weld pool is investigated by high-speed photography. The characteristics of arc shapes and droplet transfer are studied and then the models for heat flux distribution on top surface of weld pool and enthalpy distribution of metal droplets transferred into weld pool are established. By using the model, 3-D geometries of weld pools in twin-arc GMAW with a common weld pool are predicted. Corresponding welding experiments on mild steel plates are carried out and the results indicate that the predicted shape of weld bead on cross section shows good agreement with measured one.  相似文献   

10.
陈姬  武传松 《中国焊接》2009,18(2):35-40
The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.  相似文献   

11.
电弧热流分布模式对GMAW焊接温度场的影响   总被引:11,自引:3,他引:11       下载免费PDF全文
提出了GMAW熔池表面产生较大变形时的电弧热流分布模式,以此为基础并考虑熔滴过渡过程及焊缝余高,建立了焊接温度场的数值分析模型,通过数值模拟,定量分析了焊接工艺参数-GMAW熔池表面变形-电弧热流分布-熔池形态及其温度是之间的相互影响。焊接工艺试验结果,与高斯热源模型相比,采用本文给出的GMAW电弧热液分布模型的计算结果更符合实际。  相似文献   

12.
文中采用基于焊缝形貌的温度热源模型高效计算其热过程,通过单丝CO2气体保护焊堆焊件的温度场计算和焊缝形貌比较验证该热源模型的正确性,采用小孔法测试表面应力验证基于该热源模型的残余应力计算结果.结果表明,基于焊缝形貌的给定温度热源模型适用于缆式焊丝CO2气体保护焊的焊接温度场高效数值模拟;缆式焊丝CO2气体保护焊的上表面焊缝区域及焊缝中心沿厚度方向的应力分布与埋弧焊基本一致,但远离焊缝区域的纵向压缩应力幅值大于埋弧焊纵向压缩应力.  相似文献   

13.
This article reports the effect of postweld aging treatment on fatigue behavior of pulsed current welded AA 7075 aluminum alloy joints. AA7075 aluminum alloy (Al-Zn-Mg-Cu alloy) has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers, and railway transport systems. The preferred welding processes of AA7075 aluminum alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 10 mm thickness have been used as the base material for preparing multipass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt.%)) grade aluminum alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW), and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Rotary bending fatigue testing machine has been used to evaluate fatigue behavior of the welded joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. Grain refinement is accompanied by an increase in fatigue life and endurance limit. Simple postweld aging treatment applied to the joints is found to be beneficial to enhance the fatigue performance of the welded joints.  相似文献   

14.
Abstract

Among all process variables in gas metal arc welding (GMAW) process, welding current is the most influential variable affecting heat input and weld quality. Its dependence on other process variables in GMAW and universal gas metal arc welding (UGMAW) processes (which makes use of a specially designed torch to preheat the filler wire independently, before its emergence from the torch) has been investigated using four factor five level central composite rotatable design to develop relationship for predicting welding current, which enables to quantify the direct and interactive effects of four numeric factors, namely wire feedrate, open circuit voltage, welding speed and electrode stickout and one categorical factor preheat current. Mathematical models developed show that welding current increased linearly with increaseing wire feedrate and open circuit voltage, whereas it decreased with increasing electrode stickout and preheat current. Numerical optimisation was carried out, and the optimal solutions generated indicate that under the same input conditions higher deposition rates are achievable in UGMAW process.  相似文献   

15.
焊接速度和焊接电流对竖向高速GMAW驼峰焊缝的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
张理  郭震  周伟  毕贵军  韩冰 《焊接学报》2020,41(4):56-61
运用自主研发的爬壁机器人研究焊接速度和焊接电流对竖向高速熔化极气体保护焊(gas metal arc welding,GMAW)驼峰焊缝的影响. 结果表明,焊接速度或焊接电流超过某一临界值时,竖向高速GMAW会形成驼峰焊缝,且熔池中由电弧压力、熔滴冲击力和重力作用下产生的动量很大的后向液体流是竖向高速GMAW形成驼峰焊缝的主要原因. 同时,焊接速度和焊接电流显著影响驼峰焊缝形貌. 当焊接电流不变时,随焊接速度提高,驼峰焊缝的驼峰间距和驼峰高度先稳定减小,后缓慢减小,而焊缝宽度则稳定减小;当焊接速度不变时,随焊接电流增加,驼峰焊缝的驼峰间距先增加后减小,驼峰高度则是先增加后不变,而焊缝宽度则稳定增加. 此外,焊接速度过小或焊接电流过大均会造成金属液下淌.  相似文献   

16.
高频交变磁场对大电流GMAW熔滴过渡和飞溅率的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
在熔化极气体保护焊过程中,采用大送丝速度,增大焊接电流和焊丝伸出长度是提高焊接熔敷率的直接途径.但当熔滴过渡转变为旋转射流过渡时,电弧不稳,飞溅增大,焊缝成形变差.施加不同频率的纵向交变磁场,对焊缝成形进行控制.采用高速摄像技术,拍摄焊接过程中的电弧形态和熔滴过渡,研究不同频率的磁场对熔滴过渡和焊接飞溅率的影响规律.结果表明,熔滴过渡形式不同,产生飞溅的机理不同;外加频率为1 000 Hz纵向交变磁场时,电弧的旋转半径减小,电弧的挺度增大,旋转射流过渡时电弧更稳定,焊接飞溅率降低,焊缝成形改善.  相似文献   

17.
摆动电弧窄间隙立向上GMAW焊缝成形   总被引:8,自引:3,他引:5       下载免费PDF全文
文中对摆动电弧窄间隙立向上GMAW工艺进行了研究.结果表明,窄间隙立向上焊缝表面中间凸起,而立向下焊缝中间下凹;摆动角度和摆动速度的增加均有利于焊缝中间凸起高度的降低,侧壁停留时间对焊缝中间凸起的影响较小;电弧在坡口中间摆动时单位移动轨迹长度上的电弧能量能够影响焊缝中间凸起高度,侧壁停留时的单位移动轨迹长度上的电弧能量则主要影响焊缝熔宽,摆动参数通过影响电弧能量的分布来影响焊缝熔宽和中间凸起高度.  相似文献   

18.
Autogenous gas tungsten arc welding (GTAW) and pulse rapid arc gas metal arc welding (GMAW) of butting bimetal (Bubi) pipelines were studied. GMAW was carried out from the outside of the pipe while GTAW was done from the inside to prevent lack of penetration and to promote a smooth internal weld bead surface. Current, welding speed, electrode diameter, shielding gas and orbital positions were defined as variables. The requirement for the GTA weld was to achieve 2 mm penetration depth without undercutting. The required penetration was difficult to achieve due to the outwards flow pattern in the molten pool driven by the Marangoni effect as a result of low sulphur content. It was shown that, under optimised conditions, it was possible to obtain sound welds with proper geometry and defect free. The conditions needed were a combination of current of 170 A, welding speed of 200 mm/min and an electrode angle of 30°, with shielding gas protection of He-25%Ar for narrow groove welding of a J-beveled pipe.  相似文献   

19.
It is difficult to acquire satisfied weld pool image by CCD sensor during gas metal arc welding(GMAW), for arc disturbs violently, welding current is great and working frequeacy is high. By using CMOS vision sensor to GMA W process, the vivid weld pool image is collected at any time, furthermore, whose gray compression ratio is controllable by sensor hardware circuit developed. Acquired weld pool image is firstly pre-processed by using Wiener filter and Ostu threshold segmentation algorithm. Subsequently separation between weld pool intage and cathode mist region is conducted by means of mathematical morphological algorithm, and the edge of weld pool image is extracted by using Prewitt algorithm.  相似文献   

20.
High-strength quenched and tempered (HSQT) steels have been widely used in structural applications where light weight is of primary design interest.Gas metal arc welding is a common way to join QT steels.When GMAW is used to join the HSQT steel,multi-pass is usually required to achieve full penetration.In addition,weld crack is often observed because of HSQT steel’s high susceptibility to hydrogen embrittlement.In addition,due to the large amount of heat input from the arc,the heat affected zone is often softened.This reduces the ductility and strength of welds and makes the weld weaker than the base metal.In this study,a hybrid laser/GMAW process is proposed to produce butt joint for 6.5mm thick HSQT A514 steel plate.Hydrogen diffusion mechanism is first discusses for GMAW and hybrid laser-GMAW welding processes.Metal transfer mode during the hybrid laser/GMAW welding process is also analyzed.A high speed CCD camera with 4000 frame/second is used to monitor the welding process in real time.Welds obtained by GMAW and hybrid laser/GMAW techniques are compared and tested by static lap shear and dynamic impact.Effects of gap between two metal plates and laser beam/GMAW torch spacing on weld property are studied.By appropriately choosing these two parameters,crack-free butt joints with full penetration can be successfully obtained by the hybrid laser/GMAW welding process for HSQT A514 steel plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号