首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsai CY  Lin JW  Wu CY  Lin PT  Lu TW  Lee PT 《Nano letters》2012,12(3):1648-1654
We investigate the optical properties of gold nanoring (NR) dimers in both simulation and experiment. The resonance peak wavelength of gold NR dimers is strongly dependent on the polarization direction and gap distance. As the gold NR particles approach each other, exponential red shift and slight blue shift of coupled bonding (CB) mode in gold NR dimers for longitudinal and transverse polarizations are obtained. In finite element method analysis, a very strong surface plasmon coupling in the gap region of gold NR dimers is observed, whose field intensity at the gap distance of 10 nm is enhanced 23% compared to that for gold nanodisk (ND) dimers with the same diameter. In addition, plasmonic dimer system exhibits a great improvement in the sensing performance. Near-field coupling in gold NR dimers causes exponential increase in sensitivity to refractive index of surrounding medium with decreasing the gap distance. Compared with coupled dipole mode in gold ND dimers, CB mode in gold NR dimers shows higher index sensitivity. This better index sensing performance is resulted form the additional electric field in inside region of NR and the larger field enhancement in the gap region owing to the stronger coupling of collective dipole plasmon resonances for CB mode. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.  相似文献   

2.
Plasmonic nanoparticle pairs known as "dimers" embody a simple system for generating intense nanoscale fields for surface enhanced spectroscopies and for developing an understanding of coupled plasmons. Individual nanoshell dimers in directly adjacent pairs and touching geometries show dramatically different plasmonic properties. At close distances, hybridized plasmon modes appear whose energies depend extremely sensitively on the presence of a small number of molecules in the interparticle junction. When touching, a new plasmon mode arising from charge transfer oscillations emerges. The extreme modification of the overall optical response due to minute changes in very reduced volumes opens up new approaches for ultrasensitive molecular sensing and spectroscopy.  相似文献   

3.
We establish the concept of a plasmonic polymer, whose collective optical properties depend on the repeat unit. Experimental and theoretical analyses of the super- and sub- radiant plasmon response of plasmonic polymers comprising repeat units of single nanoparticles or dimers of gold nanoparticles show that (1) the redshift of the lowest energy coupled mode becomes minimal as the chain approaches the infinite chain limit at a length of ~10 particles, (2) the presence and energy of the modes are sensitive to the geometries of the constituents, that is, repeat unit, but (3) spatial disorder and nanoparticle heterogeneity have only small effects on the super-radiant mode.  相似文献   

4.
Plasmonic nanolasers based on wide bandgap semiconductors are presently attracting immense research interests due to the breaking in light diffraction limit and subwavelength mode operation with fast dynamics. However, these plasmonic nanolasers have so far been mostly realized in the visible light ranges, or most are still under optical excitation pumping. In this work, III‐nitride‐based plasmonic nanolasers emitting from the green to the deep‐ultraviolet (UV) region by energetic electron beam injection are reported, and a threshold as low as 8 kW cm?2 is achieved. A fast decay time as short as 123 ps is collected, indicating a strong coupling between excitons and surface plasmon. Both the spatial and temporal coherences are observed, which provide a solid evidence for exciton‐plasmon coupled polariton lasing. Consequently, the achievements in III‐nitride‐based plasmonic nanolaser devices represent a significant step toward practical applications for biological technology, computing systems, and on‐chip optical communication.  相似文献   

5.
Improved performance in plasmonic organic solar cells (OSCs) and organic light‐emitting diodes (OLEDs) via strong plasmon‐coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core–shell silver–silica nanoparticles (Ag@SiO2NPs) is demonstrated. NP‐enhanced plasmonic AgNW (Ag@SiO2NP–AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon‐coupling effect caused by decorating core–shell Ag@SiO2NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A?1 (at 3.2 V) and a power efficiency of 25.14 lm W?1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2NP–AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high‐performance OODs, which can be further explored in various plasmonic and optoelectronic devices.  相似文献   

6.
Tunable Fano resonances and plasmon–exciton coupling are demonstrated at room temperature in hybrid systems consisting of single plasmonic nanoparticles deposited on top of the transition metal dichalcogenide monolayers. By using single Au nanotriangles (AuNTs) on monolayer WS2 as model systems, Fano resonances are observed from the interference between a discrete exciton band of monolayer WS2 and a broadband plasmonic mode of single AuNTs. The Fano lineshape depends on the exciton binding energy and the localized surface plasmon resonance strength, which can be tuned by the dielectric constant of surrounding solvents and AuNT size, respectively. Moreover, a transition from weak to strong plasmon–exciton coupling with Rabi splitting energies of 100–340 meV is observed by rationally changing the surrounding solvents. With their tunable plasmon–exciton interactions, the proposed WS2–AuNT hybrids can open new pathways to develop active nanophotonic devices.  相似文献   

7.
F Wen  J Ye  N Liu  P Van Dorpe  P Nordlander  NJ Halas 《Nano letters》2012,12(9):5020-5026
Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.  相似文献   

8.
Nanocomposite (NC) thin films with noble metal nanoparticles (NPs) embedded in a dielectric material show very attractive plasmonic properties due to dielectric and quantum confinement effects. For single component NPs, the plasmon resonance frequency can only be tuned in a narrow range. Much interest aroused in bimetallic NPs, however, many wet chemical approaches often lead to core shell particles, which exhibit multiple plasmon resonances or do not allow large variation of the NPs alloy composition and filling factor. Here, we report a vapor phase co-deposition method to produce polymer–metal NCs with embedded homogeneous Ag–Au alloy particles showing a single plasmon resonance. The method allows production of NPs with controlled alloy composition (x), metal filling (f), and nanostructure in a protecting Teflon AF matrix. The nanostructure size and shape were characterized by transmission electron microscope. Energy dispersive X-ray spectroscopy was used to determine x and f. The optical properties and the position of surface plasmon resonance were studied by UV–Vis spectroscopy. The plasmon resonance can be tuned over a large range of the visible spectrum associated with the change in x, f, and nanostructure. Changes upon annealing at 200 °C are also reported.  相似文献   

9.
Vesseur EJ  Polman A 《Nano letters》2011,11(12):5524-5530
We study the resonant modes of surface plasmon whispering gallery cavities based on a circular groove in a Au surface. We use spatially, angle-, and polarization-resolved cathodoluminescence spectroscopy to measure the resonant plasmonic local field distribution at deep-subwavelength resolution and determine the far-field radiation distribution for each plasmonic mode. We show mode-selective excitation of the plasmonic modes and resolve the modal angular radiation pattern. The results show that plasmonic whispering gallery resonators can be used as versatile antennas both in receiving and transmitting mode.  相似文献   

10.
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.  相似文献   

11.
To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal–oxide–semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic–plasmonic transduction. Here, electrically driven, CMOS-compatible electronic–plasmonic transducers with Al–AlOX–Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si–Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic–plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal–insulator–metal (MIM)–MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.  相似文献   

12.
A quantitative understanding of the localized surface plasmon resonances (LSPRs) of metallic nanostructures has received tremendous interest. However, most of the current studies are concentrated on theoretical calculation due to the difficulty in experimentally obtaining monodisperse discrete metallic nanostructures with high purity. In this work, endeavors to assemble symmetric and asymmetric gold nanoparticle (AuNP) dimer structures with exceptional purity are reported using a DNA self‐assembly strategy through a one‐step gel electrophoresis, which greatly facilitates the preparation process and improves the final purity. In the obtained Au nanodimers, the sizes of AuNPs (13, 20, and 40 nm) and the interparticle distances (5, 10, and 15 nm) are tunable. The size‐ and distance‐dependent plasmon coupling of ensembles of single, isolated dimers in solution are subsequently investigated. The experimental measurements are correlated with the modeled plasmon optical properties of Au nanodimers, showing an expected resonance shift with changing particle sizes and interparticle distances. This new strategy of constructing monodisperse metallic nanodimers will be helpful for building more complicated nanostructures, and our theoretical and experimental understanding of the intrinsic dependence of plasmon property of metallic nanodimer on the sizes and interparticle distances will benefit the future investigation and exploitation of near‐field plasmonic properties.  相似文献   

13.
Alternative designs of plasmonic metamaterials for applications in solar energy-harvesting devices are necessary due to pure noble metal-based nanostructures’ incompatibility with CMOS technology, limited thermal and chemical stability, and high losses in the visible spectrum. In the present study, we demonstrate the design of a material based on a multilayer architecture with systematically varying dielectric interlayer thicknesses that result in a continuous shift of surface plasmon energy. Plasmon resonance characteristics of metal/semiconductor TiN/(Al,Sc)N multilayer thin films with constant TiN and increasing (Al,Sc)N interlayer thicknesses were analyzed using aberration-corrected and monochromated scanning transmission electron microscopy-based electron energy loss spectroscopy (EELS). EEL spectrum images and line scans were systematically taken across layer interfaces and compared to spectra from the centers of the respective adjacent TiN layer. While a constant value for the TiN bulk plasmon resonance of about 2.50 eV was found, the surface plasmon resonance energy was detected to continuously decrease with increasing (Al,Sc)N interlayer thickness until 2.16 eV is reached. This effect can be understood to be the result of resonant coupling between the TiN bulk and surface plasmons across the dielectric interlayers at very low (Al,Sc)N thicknesses. That energy interval between bulk and decreasing surface plasmon resonances corresponds to wavelengths in the visible spectrum. This shows the potential of tailoring the material’s plasmonic response by controlling the (Al,Sc)N interlayer thickness, making TiN-based multilayers good prospects for plasmonic metamaterials in energy devices.  相似文献   

14.
The properties of plasmonic waves of graphene on a conducting substrate are discussed based on the classical electrodynamics and linearized hydrodynamic model. General expressions are given and illustrated graphically for the dispersion relation, power flow, energy density and energy transport velocity of the plasmonic waves. The numerical results show that acoustic plasmon mode of the system has a group velocity that can be made arbitrarily close to the graphene Fermi velocity by tuning the graphene–metal distance or graphene sheet carrier density.  相似文献   

15.
Chen D 《Applied optics》2010,49(36):6868-6871
A novel cylindrical hybrid plasmonic waveguide is proposed to achieve subwavelength confinement of light. With a metal core surrounded by a silica layer and a silicon layer, the proposed cylindrical hybrid plasmonic waveguide can achieve a ring-structure mode profile at the operating wavelength (1550 nm). Most mode power locates in the silica layer with a nanoscale thickness (e.g., 50, 20, or even 5 nm), which is due to the effects of both a strong discontinuity of the normal component of the electric field at the silicon-silica interface and the exited surface plasmon wave at the silica-metal interface. Cylindrical hybrid plasmonic waveguides with different structure parameters are investigated and a relatively long propagation distance of tens of micrometers (or even hundreds of micrometers) is observed.  相似文献   

16.
Nanogap antennas are plasmonic nanostructures with a strong electromagnetic field generated at the gap region of two neighboring particles owing to the coupling of the collective surface plasmon resonance. They have great potential for improving the optical properties of fluorophores. Herein, nanogap antennas are constructed using an aqueous solution‐based method to overcome the defects of weak fluorescence and photobleaching associated with traditional organic dyes, and a highly sensitive nanogap antenna‐based sensing strategy is presented for the detection of low‐abundance nucleic acid biomarkers via a target‐triggered strand displacement amplification (SDA) reaction between two DNA hairpins that are tagged to the tips of gold nanorods (Au NRs). In the presence of targets, end‐to‐end Au NR dimers gradually form, and the fluorophores quenched by the Au NRs exhibit a dramatic fluorescence enhancement due to the plasmon‐enhanced fluorescence effect of nanogap antennas. Meanwhile, the SDA reaction results in secondary amplification of fluorescence signals. Combined with single‐molecule counting, this method applied in miRNA‐21 detection can achieve a low detection limit of 97.2 × 10?18 m . Moreover, accurate discrimination between different cells through miRNA‐21 imaging demonstrates the potential of this method in monitoring the expression level of low‐abundance nucleic acid biomarkers.  相似文献   

17.
A silver-dielectric-silver structure that supports both waveguide modes and surface plasmon polaritons is explored. The upper interface between the dielectric and the silver is periodically corrugated to allow coupling of visible photons to both types of mode. Such a metallic microcavity leads to plasmonic and waveguide self-interacting bandgaps at Brillouin zone boundaries. In addition there are found other bandgaps from mode crossings within the Brillouin zone. This results specifically in a very flat photonic band due to anticrossings between a surface plasmon polariton and waveguide modes. Characterization of the observed modes in terms of their resonant electromagnetic fields is achieved by using a multilayer, multishape differential grating theory.  相似文献   

18.
Surface plasmon polaritons (SPPs) are extremely sensitive to the surrounding refractive index and have found important applications in ultrasensitive label‐free sensing. Reducing the linewidth of an SPP mode is an effective way to improve the figure of merit (FOM) and hence the sensitivity of the plasmonic mode. Many efforts have been devoted to achieving a narrow linewidth by mode coupling, which inevitably results in an asymmetrical lineshape compromising the performance. Instead, the SPP modes are directly narrowed by elaborately engineering periodic plasmonic structures with minimized feature sizes to effectively reduce the radiative losses. A narrow linewidth smaller than 8 nm is achieved over a wide wavelength ranging from 600 to 960 nm and a minimum full width at half maximum of 3 nm at 960 nm. Benefiting from the almost perfect Lorentzian lineshape and the extremely narrow linewidth, a record FOM value of 730 is obtained. The sensor is capable of detecting bovine serum albumin with an ultralow concentration of 10?10m . The sensor has great potential for practical application for its ultrahigh FOM, broad working wavelength, and ease of high‐throughput fabrication.  相似文献   

19.
The mode hybridization between adjacent graphene nanoribbons determines the integration density of graphene‐based plasmonic devices. Here, plasmon hybridization in graphene nanostructures is demonstrated through the characterization of the coupling strength of plasmons in graphene nanoribbons as a function of charge density and inter‐ribbon spacing using Fourier transform infrared microscopy. In combination with numerical simulations, it is shown that the plasmon coupling is strongly mediated by the substrate phonons. For polar substrates, the plasmon coupling strength is limited by the plasmon–phonon interactions. In contrast, a nonpolar substrate affects neither the energy distribution of the original plasmon modes in graphene nanostructures nor their plasmon interactions, which increases exponentially as the inter‐ribbon spacing decreases. To further explore the potential of graphene broadband plasmonics on nonpolar substrates, a scheme is proposed that uses a metal–dielectric heterostructure to prevent the overlap of plasmons between neighboring graphene nanoribbons. The device structures retain the plasmon resonance frequency of the graphene ribbons and maximally isolate the plasmonic components from the surrounding electromagnetic environment, allowing modular design in integrated plasmonic circuits.  相似文献   

20.
The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape‐controlled Au NPs on bismuth vanadate (BiVO4) are studied, and a largely enhanced photoactivity of BiVO4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO4 achieves 2.4 mA cm?2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO4. It is the highest value among the previously reported plasmonic Au NPs/BiVO4. Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape‐controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号