首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present work was to investigate the feasibility of grass waste (GW) for methylene blue (MB) adsorption. The adsorption of MB on GW material was studied as a function of GW dose (0.05–1.20 g), solution pH 3–10, contact time and initial concentration (70–380 mg/L). The influence of these parameters on the adsorption capacity was studied using the batch process. The experimental data were analyzed by the Langmuir and Freundlich isotherms. The adsorption isotherm was found to follow the Langmuir model. The monolayer adsorption capacity was found to be 457.640 mg/g. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order models, and were found to follow closely the pseudo-second-order kinetic model. The results revealed that GW adsorbent is potentially low-cost adsorbent for adsorption of MB.  相似文献   

2.
The adsorption behavior of crystal violet (CV+) from aqueous solution onto magnesium-oxide coated bentonite (MCB) sample was investigated as a function of parameters such as initial CV+ concentration, contact time and temperature. The Langmuir, and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir monolayer adsorption capacity of MCB were estimated as 496 mg/g. The pseudo-first-order, pseudo-second-order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated. The values of the energy (Ea), enthalpy (ΔH) and entropy of activation (ΔS) were 56.45 kJ/mol, 53.90 kJ/mol and −117.26 J/mol K, respectively, at pH 6.5.  相似文献   

3.
Removal of both nutrients ammonium and phosphorus by natural zeolite has been studied in lab scale by using a mechanically stirred batch system (1000 ml). Zeolite, a mean particle size of 13 μm, was used as an adsorbent for the removal of ammonium and then as a seed material for the precipitation of calcium phosphate. A relationship was established between the uptake of ammonium by zeolite and the ratio of initial ammonium concentration to zeolite dosage. Ammonium uptake of zeolite was almost completed within initial 5 min of adsorption period. There is no pronounced effect of zeolite and ammonium, neither positive nor negative on the amount of calcium phosphate precipitation. The extent of the precipitation of phosphate increased with rising pH. It was also observed that when the system was allowed to relax at constant pH (i.e. under relatively low super saturations), a certain lag time was noted to elapse at the onset of the precipitation. At the pH 7.2, the amount of initial fast precipitation within 5 min and total precipitation within 120 min were around 34% and 93%, respectively. Precipitation of calcium phosphate on to ammonium-loaded zeolite was achieved at low super saturations (<pH 7.5) through secondary nucleation and crystal growth, leading to an increase in particle size.  相似文献   

4.
Adsorptive removal of parachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) from aqueous solutions by activated carbon prepared from coconut shell was studied and compared with activated carbon of commercial grade (CAC). Various chemical agents in different concentrations were used (KOH, NaOH, CaCO(3), H(3)PO(4) and ZnCl(2)) for the preparation of coconut shell activated carbon. The coconut shell activated carbon (CSAC) prepared using KOH as chemical agent showed high surface area and best adsorption capacity and was chosen for further studies. Batch adsorption studies were conducted to evaluate the effect of various parameters such as pH, adsorbent dose, contact time and initial PCP and TCP concentration. Adsorption equilibrium reached earlier for CSAC than CAC for both PCP and TCP concentrations. Under optimized conditions the prepared activated carbon showed 99.9% and 99.8% removal efficiency for PCP and TCP, respectively, where as the commercially activated carbon had 97.7% and 95.5% removal for PCP and TCP, respectively, for a solution concentration of 50mg/L. Adsorption followed pseudo-second-order kinetics. The equilibrium adsorption data were analysed by Langmuir, Freundlich, Redlich-Peterson and Sips model using non-linear regression technique. Freundlich isotherms best fitted the data for adsorption equilibrium for both the compounds (PCP and TCP). Similarly, acidic pH was favorable for the adsorption of both PCP and TCP. Studies on pH effect and desorption revealed that chemisorption was involved in the adsorption process. The efficiency of the activated carbon prepared was also tested with real pulp and paper mill effluent. The removal efficiency using both the carbons were found highly satisfactory and was about 98.7% and 96.9% as phenol removal and 97.9% and 93.5% as AOX using CSAC and CAC, respectively.  相似文献   

5.
《Advanced Powder Technology》2021,32(10):3436-3446
In this study, the powdery solid waste fly ash cenospheres (FACs) was used to synthesize zeolite nano-ABW, which maintained the initial hollow microsphere shape of the FACs. The synthetic nano-ABW zeolite was applied to remove direct fast bordeaux (DFB) dye. The coupling effects of adsorption and photocatalysis (adsorption/photocatalysis) were investigated in the degradation process. The removal rate was effectively increased from 1.4% of FACs to 72% of ABW, which may be due to the broad pore structure of synthesized hollow zeolite ABW, providing more active adsorption sites. Moreover, nano-Co3O4 semiconductor was supported on hollow ABW to further improve degradation efficiency. The results demonstrated that the removal of DFB over 6Co3O4/ABW zeolite was 66% under dark conditions, while enhanced to 90% under sunlight. Moreover, the removal rate of DFB only dropped by 4.5% after 5 cycles. It indicated that the Co3O4/ABW catalysts have high stability, and the photocatalysis enabled to degrade the dyes adsorbed on catalysts, thereby restoring the adsorption capacity of catalysts.  相似文献   

6.
In this research paper we report hydrothermal synthesis of NH2-UiO-66, a metal organic framework (MOF) with zirconium as metal and amino terephthalic acid as a linker. The synthesized MOF was characterized by XRD, FTIR, SEM and BET surface area. As a potential application in water treatment, an adsorptive removal of safranin dye was studied using the synthesized material. The effect of initial concentration and pH of the dye solution was studied on the dye adsorption capacity of the material. An optimum set of conditions resulting into maximum dye adsorption was found out. The maximum adsorption capacity of the MOF was observed to be 390?mg/g at neutral pH of the solution and at room temperature. The experimental data was fitted with Langmuir, Freundlich and Temkin adsorption isotherm models. The kinetics of adsorption was studied using pseudo first order and pseudo second order model. The dye adsorption mechanism was also attempted.  相似文献   

7.
Clinoptilolite, a natural zeolite, was investigated as an inexpensive and effective adsorbent for the adsorption of Toluidine Blue O (TBO) from its aqueous solution. The effect of parameters such as the initial concentration of TBO, the solution of pH, contact time, temperature and particle size on the TBO adsorption was examined. The adsorption rate data were analysed according to the first and second-order kinetic models. Kinetic studies show that adsorption of TBO on clinoptilolite was fitted to the second-order adsorption model with two-step diffusion process. The activation energies for TBO adsorption on clinoptilolite for the first and second diffusion processes were 8.72 kJ mol(-1) and 19.02 kJ mol(-1), respectively. The adsorption isotherm was well fitted to both the Langmuir and Freundlich models. The maximum adsorption capacity of clinoptilolite for TBO was 2.1x10(-4) mol g(-1) at solution pH of 11.0.  相似文献   

8.
A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H(2)SO(4), HNO(3), NaOH, Na(2)CO(3), CaCl(2) and NaCl. Among these reagents, 0.1M HNO(3) gave the maximum enhancement of the RB5 uptake, exhibiting 195mg/g at pH 1 with an initial RB5 concentration of 500mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 degrees C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419mg/g was obtained at pH 1 and a temperature of 35 degrees C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees and DeltaS degrees, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined.  相似文献   

9.
Phosphate removal from wastewater using red mud   总被引:6,自引:0,他引:6  
Red mud, a waste residue of alumina refinery, has been used to develop effective adsorbents to remove phosphate from aqueous solution. Acid and acid-thermal treatments were employed to treat the raw red mud. The effects of different treatment methods, pH of solution and operating temperature on adsorption have been examined in batch experiments. It was found that all activated red mud samples show higher surface area and total pore volume as well as higher adsorption capacity for phosphate removal. The red mud with HCl treatment shows the highest adsorption capacity among all the red mud samples, giving adsorption capacity of 0.58 mg P/g at pH 5.5 and 40 degrees C. The adsorption capacity of the red mud adsorbents decreases with increase of pH. At pH 2, the red mud with HCl treatment exhibits adsorption of 0.8 mg P/g while the adsorption can be lowered to 0.05 mg P/g at pH 10. However, the adsorption is improved at higher temperature by increasing 25% from 30 to 40 degrees C. The kinetic studies of phosphate adsorption onto red mud indicate that the adsorption mainly follows the parallel first-order kinetics due to the presence of two acidic phosphorus species, H(2)PO(4)(-) and HPO(4)(2-). An analysis of the adsorption data indicates that the Freundlich isotherm provides a better fitting than the Langmuir model.  相似文献   

10.
New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO4(3-) from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO(4)3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration.  相似文献   

11.
Ultrafine silk fibroin powder was successfully produced using our developed machine and used as low-cost adsorbent to remove dyes in the printing and dyeing wastewater. The silk powder thus prepared was characterized by scanning electronic microscopy (SEM), laser particle analyzer and Fourier transform infrared (FTIR) spectrum. It showed that the silk powder with an average diameter of 3.8 μm was dominant in β-sheet structure. Dye adsorption experiments demonstrated that silk powder could effectively remove model dyes including direct orange (DO), disperse blue (DB) and methylene blue (MB) in particular. Factors influencing the adsorption of MB, e.g., solution pH, contact time, adsorption concentration and ionic strength were systematically investigated. Isotherm equilibrium studies demonstrated that MB adsorption process followed Langmuir model. The maximum adsorption capacity for MB dye was estimated to be 20.58 mg/g and the decoloration percentage could reach up to 95%. The batch experimental results suggested that silk fibroin powder could be used as an efficient sorbent to remove dyes in textile effluents.  相似文献   

12.
In this paper the ability of two natural products in removing dyes has been tested. After a preliminary screening for dye removal capacity, a tannin-based coagulant called ACQUAPOL C-1 and a vegetal protein extract derived from Moringa oleifera seed have been fully studied. The influence of several parameters such as pH, temperature or initial dye concentration (IDC) have been tested and the behavior of both coagulants has been compared. pH results to be an interesting variable and dye removal decreases as pH increases. This effect is higher in ACQUAPOL C-1 than in M. oleifera seed extract. Temperature seems not to be so affecting parameter, while IDC appears to be a very important variable in qc capacity, which is higher as IDC increases. Langmuir isotherm model fits very well in both cases of ACQUAPOL C-1 and M. oleifera seed extract dye removal.  相似文献   

13.
The adsorption of Disperse Orange 25 (3-[N-ethyl-4-(4-nitrophenylazo) phenylamino] propionitrile) onto activated carbon was investigated in a batch system with respect to contact time, carbon dosage, pH and temperature from aqueous solutions. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Langmuir isotherm model agrees with the experimental data well. Maximum adsorption capacity (qmax) of Disperse Orange 25 onto adsorbent was 118.93 mg g−1 at 20 °C. The first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated as well. The experimental data fitted very well to pseudo-second-order kinetic model. The results show that activated carbon prepared from Euphorbia rigida by sulfuric acid chemical activation could be employed as low-cost material to compare with commercial activated carbon for the removal of disperse dyes from effluents.  相似文献   

14.
15.
The removal of Ni(II) from aqueous solution by magnetic nanoparticles prepared and impregnated onto tea waste (Fe(3)O(4)-TW) from agriculture biomass was investigated. Magnetic nanoparticles (Fe(3)O(4)) were prepared by chemical precipitation of a Fe(2+) and Fe(3+) salts from aqueous solution by ammonia solution. These magnetic nanoparticles of the adsorbent Fe(3)O(4) were characterized by surface area (BET), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). The effects of various parameters, such as contact time, pH, concentration, adsorbent dosage and temperature were studied. The kinetics followed is first order in nature, and the value of rate constant was found to be 1.90×10(-2) min(-1) at 100 mg L(-1) and 303 K. Removal efficiency decreases from 99 to 87% by increasing the concentration of Ni(II) in solution from 50 to 100 mg L(-1). It was found that the adsorption of Ni(II) increases by increasing temperature from 303 to 323 K and the process is endothermic in nature. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the Langmuir adsorption capacity, Q°, was found to be (38.3)mgg(-1). The results also revealed that nanoparticle impregnated onto tea waste from agriculture biomass, can be an attractive option for metal removal from industrial effluent.  相似文献   

16.
A novel adsorbent, magnetic nanoparticle (γ-Fe2O3)-coated zeolite (MNCZ), was prepared for the removal of arsenic (As) ions from aqueous solution. The influence of different sorption parameters, that is, contact time, acidic reaction (pH) and initial arsenic concentration were studied using batch equilibrium techniques. The results obtained showed that the MNCZ was effective for the removal of As from aqueous solution, and the percentage removal of As could reach over 95.6% at a pH value of 2.5 within 15?min. Moreover, the removal of As depended on the initial concentration of As. For the regeneration of MNCZ material, 0.1?M NaOH was suitable for the desorption of As (70% after 15?min), and the regenerated material showed an adsorption capacity of 93.95% within five cycles. We concluded that MNCZ presents a reusable adsorbent for a fast, convenient and highly efficient removal of As from aqueous solution.  相似文献   

17.
Batch studies were conducted to examine the adsorption kinetics and adsorption capacity of iron oxide-coated biomass (IOCB) for As(III) and As(V). The optimum pH for As(V) and As(III) removal was found to be 6. The equilibrium time for removal of arsenic was found to be approximately 7 h. The adsorption of As(V) on IOCB was rapid compared to that of As(III) adsorption. An increase in temperature (from 5 to 30 °C) was found to increase As(III) removal, whereas in the case of As(V), the removal increased with temperature from 5 to 10 °C, but remained relatively constant thereafter up to 30 °C. The pseudo-second order rate equation was found to describe better the kinetics of arsenic adsorption than other equations. The isotherm data for As(V) removal fitted better with the Langmuir equation compared with other tested models and the isotherm data for As(III) removal fitted better with Redlich–Peterson equation than other tested models. Iron oxide-coated fungal biomass (A. niger) was found to be efficient in removing arsenic from an aqueous solution.  相似文献   

18.
Solid-state conversion of fly ash to an amorphous aluminosilicate adsorbent (geopolymer) has been investigated under different conditions and the synthesised material has been tested for Cu2+ removal from aqueous solution. It has been found that higher reaction temperature and Na:FA ratio will make the adsorbents achieving higher removal efficiency. The adsorbent loading and Cu2+ initial concentration will also affect the removal efficiency while the adsorption capacity exhibits similarly at 30-40 degrees C. The adsorption capacity of the synthesised adsorbent shows much higher value than fly ash and natural zeolite. The capacity is 0.1, 3.5 and 92 mg/g, for fly ash, natural zeolite, and FA derived adsorbent, respectively. The kinetic studies indicate that the adsorption can be fitted by the second-order kinetic model. Langmuir and Freundlich isotherms also can fit to the adsorption isotherm.  相似文献   

19.
Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5 h and above 90% at 24 h. The maximum Pb(II) removal was 117.9 mg g−1 of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.  相似文献   

20.
In this study, the MgCl2/red mud system (MRM) was used to investigate the color removal efficiency of dye solutions. Parameters such as the effect of the dosage of red mud (RM) and MgCl2 have been studied. The effect of pH on the conversion rate of Mg2+ has also been studied. The color removal efficiency of MRM was compared with that of PAC/RM and PAC/NaOH. Meanwhile, the color removal efficiency of RM was compared with that of NaOH. The results show that the MRM system can remove more than 98% of the coloring material at a dosage of 25 g RM/L dye solution and a volume of 1.5 mL MgCl2/L dye solution in the decolorization process of reactive dye, acid dye and direct dye. The color removal efficiency was better than PAC/RM and PAC/NaOH system. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicated that both models provide the best correlation of the experimental data. The decolorization mechanism of MRM was discussed, too. The MRM system was a viable alternative to some of the more conventional forms of chemical treatment of dye solutions and also provided another way to make use of industrial waste red mud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号