首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 microM, for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 +/- 30 s, whereas recovery time was 216 +/- 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxyphenyl)hydrazone (FCCP; 750 nM). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine++ + iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 microM). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

2.
No.7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate), a selective inhibitor of the Na+/Ca2+ exchanger (NCX1), has been newly synthesized. It dose-dependently inhibited Na+i-dependent 45Ca2+ uptake and Na+i-dependent [Ca2+]i increase in cardiomyocytes, smooth muscle cells, and NCX1-transfected fibroblasts (IC50 = 1.2-2.4 microM). Inhibition was observed without prior incubation with the agent and was completely reversed by washing cells with buffer for 1 min. Interestingly, No.7943 was much less potent in inhibiting Na+o-dependent 45Ca2+ efflux and Na+o-induced [Ca2+]i decline (IC50 = >30 microM), indicating that it selectively blocks the reverse mode of Na+/Ca2+ exchange in intact cells. In cardiac sarcolemmal preparations consisting mostly of inside-out vesicles, the agent inhibited Na+i-dependent 45Ca2+ uptake and Na+o-dependent 45Ca2+ efflux with similar, but slightly lower, potencies (IC50 = 5.4-13 microM). Inhibition was noncompetitive with respect to Ca2+ and Na+ in both cells and sarcolemmal vesicles. These results suggest that No.7943 primarily acts on external exchanger site(s) other than the transport sites in intact cells, although it is able to inhibit the exchanger from both sides of the plasma membrane. No.7943 at up to 10 microM does not affect many other ion transporters nor several cardiac action potential parameters. This agent at these concentrations also did not influence either diastolic [Ca2+]i or spontaneous beating in cardiomyocytes. Furthermore, No.7943 markedly inhibited Ca2+ overloading into cardiomyocytes under the Ca2+ paradox conditions. Thus, No.7943 is not only useful as a tool with which to study the transport mechanism and physiological role of the Na+/Ca2+ exchanger but also has therapeutic potential as a selective blocker of excessive Ca2+ influx mediated via the Na+/Ca2+ exchanger under pathological conditions.  相似文献   

3.
The effect of Ca2+ channel-acting drugs on bovine adrenal mitochondria Ca2+ movements was investigated. Mitochondrial Ca2+ uptake is performed by an energy-driven Ca2+ uniporter with a Km of 20.9 +/- 3.2 microM and Vmax of 148.1 +/- 7.2 nmol 45Ca2+ min-1 mg-1. Ca2+ release is performed through an Na+/Ca2+ antiporter with a Km for Na+ of 4.2 +/- 0.5 mM, a Vmax of 7.5 +/- 0.4 nmol 45Ca2+ min-1 mg-1, and a Hill coefficient of 1.4 +/- 0.2 Ca2+ efflux through the mitochondrial Na+/Ca2+ exchanger was inhibited by several dihydropyridines (nitrendipine, felodipine, nimodipine, (+)isradipine) and by the benzothiazepine diltiazem with similar potencies. In contrast, neither CGP 28392, Bay-K-8644, amlodipine, nor verapamil had any effect on Ca2+ efflux. Nitrendipine at 20 microM modified neither the Km nor the Hill coefficient for Na+, whereas the Vmax was reduced to 2.9 nmol 45Ca2+ min-1 mg-1, thus demonstrating noncompetitive modulation of the Na+/Ca2+ exchanger. None of the Ca2+ channel-acting drugs assayed at 100 microM affected Ca2+ influx through the uniporter. Ca2+ channel blockers inhibited the Na+/Ca2+ antiporter and displaced the specific binding of [3H]nitrendipine to intact mitochondria with Ki values similar to the IC50s obtained for the inhibition of the Ca2+ efflux. Ca2+ channel-acting drugs that did not inhibit the Na+/Ca2+ exchanger (amlodipine, CGP 28392, Bay-K-9644, and verapamil, at concentrations of 100 microM or higher) had no effect on [3H]nitrendipine binding. These results suggest that the adrenomedullary mitochondrial dihydropyridine receptor is associated with the Na+/Ca2+ exchanger.  相似文献   

4.
The mechanisms, by which the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) evoke an increase in the free cytosolic calcium concentration ([Ca2+]i) and in intracellular pH (pHi), have been investigated in Ehrlich ascites tumor cells. The increase in [Ca2+]i evoked by ATP or UTP is abolished after depletion of intracellular Ca2+ stores with thapsigargin in Ca2+-free medium, and is inhibited by U73122, an inhibitor of phospholipase C (PLC), indicating that the increase in [Ca2+]i is primarily due to release from intracellular, Ins(1,4,5)P3-sensitive Ca2+ stores. ATP also activates a capacitative Ca2+-entry pathway. ATP as well as UTP evokes a biphasic change in pHi, consisting of an initial acidification followed by alkalinization. Suramin and 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) inhibit the biphasic change in pHi, apparently by acting as antagonists at P2 receptors. The alkalinization evoked by the P2 receptor agonists is found to be due to activation of a 5'-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na+/H+ exchanger. ATP and UTP elicit rapid cell shrinkage, presumably due to activation of Ca2+ sensitive K+ and Cl- efflux pathways. Preventing cell shrinkage, either by incubating the cells at high extracellular K+ concentration, or by adding the K+-channel blocker, charybdotoxin, does not affect the increase in [Ca2+]i, but abolishes the activation of the Na+/H+ exchanger, indicating that activation of the Na+/H+ exchanger is secondary to the Ca2+-induced cell shrinkage.  相似文献   

5.
1. The effects of extracellular adenosine 5'-triphosphate (ATP) on smooth muscles are mediated by a variety of purinoceptors. In this study we addressed the identity of the purinoceptors on smooth muscle cells (SMC) cultured from human large coronary arteries. Purinoceptor-mediated increases in [Ca2+]i were measured in single fura-2 loaded cells by applying a digital imaging technique, and the formation of inositol phosphate compounds was quantified after separation on an anion exchange column. 2. Stimulation of the human coronary artery SMC (HCASMC) with extracellular ATP at concentrations of 0.1-100 microM induced a transient increase in [Ca2+]i from a resting level of 49 +/- 21 nM to a maximum of 436 +/- 19 nM. The effect was dose-dependent with an EC50 value for ATP of 2.2 microM. 3. The rise in [Ca2+]i was independent of the presence of external Ca2+, but was abolished after depletion of intracellular stores by incubation with 100 nM thapsigargin. 4. [Ca2+]i was measured upon stimulation of the cells with 0.1-100 microM of the more specific P2-purinoceptor agonists alpha, beta-methyleneadenosine 5'-triphosphate (alpha,beta-MeATP), 2-methylthioadenosine 5'-triphosphate (2MeSATP) and uridine 5'-triphosphate (UTP). alpha, beta-MeATP was without effect, whereas 2MeSATP and UTP induced release of Ca2+ from internal stores with 2MeSATP being the most potent agonist (EC50 = 0.17 microM), and UTP having a potency similar to ATP. The P1 purinoceptor agonist adenosine (100 microM) did not induce any changes in [Ca2+]i. 5. Stimulation with a submaximal concentration of UTP (10 microM) abolished a subsequent ATP-induced increase in [Ca2+]i, whereas an increase was induced by ATP after stimulation with 10 microM 2MeSATP. 6. The phospholipase C (PLC) inhibitor U73122 (5 microM) abolished the purinoceptor-activated rise in [Ca2+]i, whereas pretreatment with the Gi protein inhibitor pertussis toxin (PTX, 500 ng ml-1) was without effect on ATP-evoked [Ca2+]i increases. 7. Receptor activation with UTP and ATP resulted in formation of inositol phosphates with peak levels of inositol 1, 4, 5-trisphosphate (Ins(1, 4, 5)P3) observed 5-20 s after stimulation. 8. These findings show, that cultured HCASMC express G protein-coupled purinoceptors, which upon stimulation activate PLC to induce enhanced Ins(1, 4, 5)P3 production causing release of Ca2+ from internal stores. Since a release of Ca2+ was induced by 2MeSATP as well as by UTP, the data indicate that P2y- as well as P2U-purinoceptors are expressed by the HCASMC.  相似文献   

6.
Insulin secretion induced by cholecystokinin-8 (CCK-8) was recently suggested to involve phospholipase A2 (PLA2) activation. In this study, we examined whether CCK-8 stimulates the Ca2+-independent form of PLA2 in isolated rat islets, in comparison with stimulation by the PLA2-activating cholinergic agonist carbachol. We found that CCK-8 (100 nmol/l; 5.6 mmol/l glucose) induces lysophosphatidylcholine accumulation from [3H]palmitate-prelabeled islets (170 +/- 39%; P = 0.003) as well as arachidonic acid (AA) efflux from [3H]AA-prelabeled islets (190 +/- 13%; P < 0.001), and that p-amylcinnamoylantranilic acid (ACA) (50 micromol/l)-mediated PLA2 inhibition reduces CCK-8-induced AA efflux (52 +/- 11%; P = 0.001) and insulin secretion (67 +/- 16%; P < 0.001). Neither the Ca2+ channel antagonist verapamil (100 micromol/l) nor the Ca2+ATPase inhibitor thapsigargin (1 micromol/l) affected CCK-8-induced AA efflux and insulin secretion. Furthermore, despite removal of extracellular Ca2+, CCK-8 still increased AA efflux (48 +/- 14%; P = 0.006) and insulin secretion (105 +/- 46%; P = 0.025). In contrast, carbachol (100 micromol/l)-stimulated AA efflux was reduced by verapamil by 36 +/- 6% (P < 0.001) and abolished by removal of extracellular Ca2+. Overnight protein kinase C (PKC) downregulation by 12-O-tetradecanoyl phorbol-13-acetate (TPA) (500 nmol/l) reduced CCK-8-induced AA efflux (45 +/- 12%; P = 0.003) and insulin secretion (40 +/- 16%; P = 0.020). No additive action regarding either AA formation or insulin secretion was seen by combining TPA overnight and ACA, which implies the involvement of an additional PLA2- and PKC-independent signaling mechanism. The results show that CCK-8, in contrast to carbachol, activates Ca2+-independent PLA2 in islets and that the PLA2-activating capacity of CCK-8 is partly PKC dependent. Hence, Ca2+-independent PLA2 seems important for the insulinotropic effect of CCK-8, but not for that of carbachol.  相似文献   

7.
In the hippocampus, the neuromodulatory role of adenosine depends on a balance between inhibitory A1 responses and facilitatory A2A responses. Since the presynaptic effects of hippocampal inhibitory A1 adenosine receptors are mostly mediated by inhibition of Ca2+ channels, we now investigated whether presynaptic facilitatory A2A adenosine receptors would modulate calcium influx in the hippocampus. The mixed A1/A2 agonist, 2-chloroadenosine (CADO; 1 microM) inhibited veratridine (20 microM)-evoked 45Ca2+ influx into hippocampal synaptosomes of the CA1 or CA3 areas by 24.2 +/- 4.5% and 17.2 +/- 5.8%, respectively. In the presence of the A, antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 100 nM), the inhibitory effect of CADO (1 microM) on 45Ca2+ influx was prevented in CA1 synaptosomes, but was converted into a facilitatory effect (14.2 +/- 6.7%) in CA3 synaptosomes. The A2A agonist, CGS 21680 (3-30 nM) facilitated 45Ca2+ influx in CA3 synaptosomes, with a maximum increase of 22.9 +/- 3.9% at 10 nM, and was virtually devoid of effect in CA1 synaptosomes. This facilitatory effect of CGS 21680 (10 nM) in CA3 synaptosomes was prevented by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC; 200 nM), but not by the A1 antagonist, DPCPX (20 or 100 nM). The facilitatory effect of CGS 21680 on 45Ca2+ uptake by CA3 synaptosomes was prevented by the class A calcium channel blocker, omega-agatoxin-IVA (200 nM). These results indicate that presynaptic adenosine A2A receptors facilitate calcium influx in the CA3 but not the CA1 area of the rat hippocampus through activation of class A calcium channels.  相似文献   

8.
1. ATP (10-100 microM), but not glutamate (100 microM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 microM) nor glutamate (100 microM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 microM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 microM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 microM to 10 microM). 2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 microM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 microM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells). 3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but alpha,beta-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 microM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2'- and 3'-O-(4-Benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 microM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5'-triphosphate-2', 3'-dialdehyde (oxidized ATP, 100 microM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 microM). 4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.  相似文献   

9.
The presence of inorganic phosphate and Ca2+ in the external medium induces a closely parallel efflux of both endogenous adenine nucleotides and Mg2+ from rat liver mitochondria. These effluxes are (a) pH-dependent and inhibited by uncouplers, respiration inhibitors and external Mg2+; (b) completely prevented by bongkrekate, but stimulated by atractylate. ATP, ADP or AMP each inhibit the release of Mg2+ promoted by Ca2+ and phosphate; however, in the presence of oligomycin and P1,P5-di(adenosine-5')-pentaphosphate (an inhibitor of adenylate kinase) only ADP is effective. Also the release of accumulated Ca2+ observed when approximately 50% Mg2+ is discharged is retarded by bongkrekate and added Mg2+ whereas it is accelerated by atractylate. All adenine nucleotides have a significant effect in retarding the efflux of accumulated Ca2+ but, in the presence of oligomycin and P1,P5-di(adenosine-5')-pentaphosphate, only ADP is active. From these results we conclude that effluxes of Mg2+, Ca2+ and adenine nucleotide from rat liver mitochondria induced by external phosphate are interconnected and regulated by external ADP and Mg2+ levels.  相似文献   

10.
The effects of lowering extracellular Na+ concentration [Na+]o, on cytosolic Ca2+ concentration, [Ca2+]c were examined by a microfluorimetric method using fura-2 in perifused preparations of isolated rat pancreatic islets. The total replacement of extracellular Na+ (Na+o) by equimolar N-methyl-D-(--)-glucamine caused a rapid rise in [Ca2+]c, and partial replacement of Na+o resulted in correlative rises in [Ca2+]c in accordance with the magnitude of reduced [Na+]o. The rise in [Ca2+]c induced by Na+o removal was strongly inhibited in the Ca2+o-deficient environment or by Ni2+. The [Ca2+]c rise, however, remained almost unchanged in the presence of nifedipine or SK&F 96365, and was enhanced by the addition of ouabain. The electrochemical gradients for Ca2+ (delta mu Ca2+) and Na+ (delta mu Na+) were calculated to be 39.08 and 12.8 kJ/mol, respectively, in this study, indicating a stoichiometry of 3Na+: 1 Ca2+. These results indicate that, in rat pancreatic islets, the rise in [Ca2+]c induced by lowering [Na+]o is mainly due to Ca2+ entry medicated by the Na+/Ca2+ exchanger operating with the stoichiometry of 3Na+:1 Ca2+, and that the Na+/Ca2+ exchanger plays an important role in maintaining stable-state [Ca2+]c.  相似文献   

11.
BACKGROUND: To elucidate the molecular mechanism underlying sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) mediated signaling, we compared their effects with those of adenosine triphosphate (ATP) and angiotensin II (Ang II) on the cytosolic free Ca2+ concentration ([Ca2+]i), inositol 1,4, 5-trisphosphate (IP3) generation and arachidonic acid release in rat glomerular mesangial cells. METHODS: The fluorescent Ca2+ indicator, Fura-2, was used to measure the [Ca2+]i changes in cultured rat glomerular mesangial cells either in suspension or attached to the coverslips. RESULTS: SPC 5 microM, S1P 5 microM, ATP 100 microM and Ang II 90 nM all induced increases in the [Ca2+]i, and the effect showed marked homologous desensitization, while heterologous desensitization was less. After the initial exposure of the cells to SPC, the increase in [Ca2+]i induced by subsequent addition of ATP or Ang II was only reduced by about 14.3% and 4.8%, respectively. After the initial exposure to S1P, a greater reduction was seen (42. 1% and 47.7%, respectively). Both arachidonic acid release and IP3 generation were activated by all four agonists with an identical rank order of effectiveness of SPC > S1P > ATP = Ang II; both were pertussis toxin-sensitive and cholera toxin-resistant. The arachidonic acid release induced by all four agonists showed identical susceptibility to removal of extracellular Ca2+, whereas IP3 generation displayed differential extracellular Ca2+ dependence. Only SPC-induced IP3 generation was highly sensitive to extracellular Ca2+ level, and this Ca2+ dependence was abolished after pretreatment of cells with arachidonyl trifluoromethyl ketone (AACOCF3), a phospholipase A2 inhibitor. Furthermore, the Mn2+ influx was markedly greater in SPC-stimulated cells than in either control or other agonist-stimulated cells, and was decreased by prior exposure of cells to AACOCF3. After phospholipase A2 was inhibited or in the absence of extracellular Ca2+, SPC displayed identical effectiveness as S1P on desensitizing the action of ATP or Ang II on the increase in [Ca2+]i. Conclusions. Our results indicate that all four agents primarily activate phospholipase C through their receptor occupancies, but that SPC alone also induces further significant Mn2+ influx and IP3 generation attributable to its primary stimulatory effect on arachidonic acid release. Thus, the heterologous desensitization to ATP or Ang II induced by SPC was less profound than that induced by S1P, since SPC induced a Ca2+ influx.  相似文献   

12.
Neuropeptide Y(NPY) inhibits Ca2+-activated K+ channels reversibly in vascular smooth muscle cells from the rat tail artery. NPY (200 microM) had no effect in the absence of intracellular adenosine 5'-triphosphate (ATP) and when the metabolic poison cyanide-M-chlorophenyl hydrozone (10 microM) was included in the intracellular pipette solution. NPY was also not effective when ATP was substituted by the non-hydrolysable ATP analogue adenosine 5'-[beta gamma-methylene]-triphosphate (AMP-PCP). NPY inhibited Ca2+-activated K+ channel activity when ATP was replaced by adenosine 5'-O-(3-thiotriphosphate) (ATP [gamma-S]) and the inhibition was not readily reversed upon washing. Protein kinase inhibitor (1 microM), a specific inhibitor of adenosine 3', 5'-cyclic monophosphate-dependent protein kinase, had no significant effect on the inhibitory action of NPY. The effect of NPY on single-channel activity was inhibited by the tyrosine kinase inhibitor genistein (10 microM) but not by daidzein, an inactive analogue of genistein. These observations suggest that the inhibition by NPY of Ca2+-activated K+ channels is mediated by ATP-dependent phosphorylation. The inhibitory effect of NPY was antagonized by the tyrosine kinase inhibitor genistein.  相似文献   

13.
Involvement of an L-type Ca2+ channel in the regulation of spontaneous transmitter release was studied in Xenopus nerve-muscle cultures. The frequency of spontaneous synaptic currents, which reflects impulse-independent acetylcholine release from the nerve terminals, showed a marked increase in high-K+ medium or after treatment with a phorbol ester, 12-O-tetradecanoyl-phorbol 13-acetate, a drug that activates protein kinase C and depolarizes the presynaptic neuron. The potentiation effect of high K+ and 12-O-tetradecanoyl-phorbol 13-acetate requires Ca2+ influx through the L-type Ca2+ channel in the plasma membrane, since it was significantly reduced by the presence of nifedipine, verapamil or diltiazem and enhanced by Bay K 8644, an L-type Ca2+ channel agonist. It was shown recently that adenosine 5'-triphosphate markedly potentiates the spontaneous acetylcholine release at these synapses through the binding of P2-purinoceptors and the activation of protein kinase C. We found in the present study that potentiation effects of adenosine 5'-triphosphate are inhibited by L-type Ca2+ channel blockers, suggesting that the L-type Ca2+ channel is responsible for the positive regulation of spontaneous acetylcholine secretion by adenosine 5'-triphosphate at the developing neuromuscular synapses. Our data suggest that modulation of the L-type Ca2+ channel in embryonic motor nerve terminals is important for the regulation of spontaneous transmitter release.  相似文献   

14.
Calcium transport by the Na+/Ca2+ exchanger was measured in plasma membranes vesicles purified from rat brain and in primary rat cortical cell culture. Sodium-loaded vesicles rapidly accumulate Ca2+ via Na+/Ca2+ exchange (Na+(i)-dependent Ca2+ uptake). Extravesicular zinc inhibited Na+/Ca2+ exchange as evidenced by a reduction of the initial velocity of Ca2+ uptake. Significant inhibition of Ca2+ uptake was seen at concentrations of zinc as low as 3 microM. Lineweaver-Burk analysis of the data was consistent with noncompetitive inhibition with respect to extravesicular Ca2+ concentration. The Ki for zinc inhibition of Ca2+ uptake determined from a Dixon plot was 14.5 microM. This is within the range of zinc concentrations thought to be obtained extracellularly after excitation. When vesicles were preloaded with Ca2+, extravesicular zinc also inhibited reversal of Na+/Ca2+ exchange (Na+(i)-dependent Ca2+ release) although its potency was much less: concentrations of > or = 30 microM zinc were required. Zinc inhibition of Ca2+ release was not Na+ dependent. Na+(i)-dependent calcium uptake by rat cortical cells in primary culture also was inhibited by zinc. The extent of inhibition was similar to that seen for inhibition of Na+(i)-dependent Ca2+ uptake in membrane vesicles, but the potency was less. The results suggest that Ca2+ transport by the Na+/Ca2+ exchanger is inhibited by concentrations of zinc thought to be attained extracellularly after excitation.  相似文献   

15.
1. The effects of exogenous adenosine 5'-triphosphate (ATP) and alpha,beta-methylene ATP (alpha,beta meATP) on C6BU-1 cells transfected with P2X2 and P2X3 subtypes, separately or together (P2X2+3), were investigated using fura-2 fluorescence recording and whole-cell patch clamp recording methods. 2. Untransfected C6BU-1 cells showed no intracellular Ca2+ ([Ca2+]i) increase in response to depolarizing stimulation with high K+ or stimulation with ATP. There was no current induced by ATP under voltage clamp conditions in untransfected C6BU-1 cells. ATP caused Ca2+ influx only from extracellular sources in C6BU-1 cells transfected with the P2X subtypes, suggesting that the C6BU-1 cell line is suitable for the characterization of Ca2+ influx through the P2X subtypes. 3. In C6BU-1 cells transfected with the P2X2 subtype, ATP (more than 10 microM) but not alpha,beta meATP (up to 100 microM) evoked a rise in [Ca2+]i. 4. In the cells transfected with the P2X3 subtype, current responses under voltage clamp conditions were observed at ATP concentrations higher than 0.1 microM of alpha,beta meATP were required. This discrepancy in the concentration dependence of the agonist responses with respect to the [Ca2+]i rise and the current response was seen only with the P2X3 subtype. In addition, the agonist-induced rise in [Ca2+]i was observed only after the first application because of desensitization of this subtype. 5. In C6BU-1 cells co-transfected with P2X2 and P2X3, ATP at 1 microM evoked a [Ca2+]i rise. This responsiveness was higher than that of the other subtype combinations tested. The efficiency of expression was improved by co-transfection with P2X2 and P2X3, when compared to transfection with the P2X3 subtype alone. The desensitization of the P2X2+3 was apparently slower than that of the P2X3 subtype alone. Therefore, this combination could respond to the repeated application of agonists each time with a [Ca2+]i rise. 6. These results suggest that the P2X2 and P2X3 subtypes assemble a heteromultimer and that this heterogeneous expression acquires more effective Ca2+ dynamics than that by homogeneously expressed P2X2 or P2X3.  相似文献   

16.
The effects of endurance run training on Na+-dependent Ca2+ regulation in rat left ventricular myocytes were examined. Myocytes were isolated from sedentary and trained rats and loaded with fura 2. Contractile dynamics and fluorescence ratio transients were recorded during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degreesC. Resting and peak cytosolic Ca2+ concentration ([Ca2+]c) did not change with exercise training. However, resting and peak [Ca2+]c increased significantly in both groups during 5 min of continuous pacing, although diastolic [Ca2+]c in the trained group was less susceptible to this elevation of intracellular Ca2+. Run training also significantly reduced the rate of [Ca2+]c decay during relaxation. Myocytes were then exposed to 10 mM caffeine in the absence of external Na+ or Ca2+ to trigger sarcoplasmic reticular Ca2+ release and to suppress cellular Ca2+ efflux. This maneuver elicited an elevated steady-state [Ca2+]c. External Na+ was then added, and the rate of [Ca2+]c clearance was determined. Run training significantly reduced the rate of Na+-dependent clearance of [Ca2+]c during the caffeine-induced contractures. These data demonstrate that the removal of cytosolic Ca2+ was depressed with exercise training under these experimental conditions and may be specifically reflective of a training-induced decrease in the rate of cytosolic Ca2+ removal via Na+/Ca2+ exchange and/or in the amount of Ca2+ moved across the sarcolemma during a contraction.  相似文献   

17.
We have used the fluorescent probe fura-2 to perform agonist studies of the receptor(s) that mobilizes Ca2+ ions in response to extracellular ATP in human parathyroid cells. Extracellular ATP induced Ca2+ responses in both normal and adenomatous parathyroid cells. Activation resulted in an initial small transient response during which Ca2+ ions were released from intracellular stores, followed by a prominent plateau response during which Ca2+ ions entered the cells from the extracellular fluid. The responses exhibited moderate desensitization upon repeated stimulation with ATP, and the ratio of the plateau to the peak response remained constant for any given group of activated cells. The baseline intracellular calcium concentration was 100 +/- 4.3 nM (mean +/- S.E.M., n = 3). Following maximal activation by extracellular ATP it rose to a peak of 684 +/- 45.7 nM (n = 3) and a plateau level of 415 +/- 9.9 nM (n = 3). We examined the effects of a variety of nucleotide species. The order of potency was: adenosine, AMP < alpha, beta-methylene ATP < ADP < ATP approximately UTP. In the concentration range 1-1000 microM, UTP (the concentration of agonist inducing a half-maximal response, EC50 = 2.4 microM) was slightly more potent than ATP (EC50 = 3.6 microM), and the two nucleotides evoked similar maximal responses. In the concentration range 0.01-1.0 microM, however, there was a clear difference in the behaviour of the two nucleotides. In particular, ATP, but not UTP, evoked responses that suggested the presence of a second receptor of higher potency but markedly lower efficacy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

19.
PURPOSE: To characterize Ca2+ mobilization by P2 receptors in the bovine corneal endothelial cells (BCEC). METHODS: Changes in intracellular Ca2+ ([Ca2+]i) were measured by fluorescence imaging of cultured and fresh BCEC cells loaded with the Ca2+-sensitive dye Fura-PE3. Relative rates of Ca2+ influx were measured employing Mn2+ as a surrogate for Ca2+. RESULTS: Exposure of cultured cells to uridine 5'-triphosphate (UTP), 2-methyl-thio ATP (msATP) and ATP caused biphasic changes in [Ca2+]i consisting of a peak followed by a plateau phase. Based on the peak responses to 100 microM agonist, the magnitude of UTP responses were similar to that of ATP but greater than that of msATP or ADP. UTP and msATP stimulated Mn2+ influx following [Ca2+]i peak similar to that observed in response to cyclopiazonic acid (CPA), an inhibitor of ER Ca2+-ATPase. Under Ca2+-free conditions, peak responses were similar to those in the presence of external Ca2+, but reduced when the cells were pre-exposed to CPA. Reactive Blue-2 (RB2), inhibited msATP responses by 60.4 +/- 18.8% but UTP responses by only 10.6 +/- 9.5%. Repeated exposures to UTP or msATP reduced [Ca2+]i mobilization indicating homologous desensitization. Response to UTP was not affected by a prior exposure to msATP. However, response to msATP was reduced by a prior exposure to UTP indicating mixed heterologous desensitization. Fresh cells responded to UTP (50 microM) with temporal characteristics of [Ca2+]i mobilization similar to that of cultured cells. CONCLUSION: BCEC express P2 receptors belonging to the P2Y subfamily. The emptying of the IP3-sensitive stores, leading to the initial peak in [Ca2+]i response, subsequently caused capacitative Ca2+ influx leading to the onset of the plateau phase. A significant homologous desensitization to UTP and msATP, selective heterologous desensitization between UTP and msATP, and selective inhibition by RB2 indicate the coexistence of multiple P2Y receptors.  相似文献   

20.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号