首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reports the details of numerical models used to predict the performance of two 3.6 m-high well-instrumented wrapped-face walls. The walls were nominally identical except that the reinforcement material in one wall was a steel welded wire mesh and in the other a biaxial polypropylene geogrid. The backfill soil was modelled using both linear and nonlinear elastic-plastic constitutive models. A general hyperbolic (nonlinear) axial load-strain-time model was used for the reinforcement. The numerical results show good agreement with measured performance features for the welded wire mesh wrapped-face wall. Agreement between numerical predictions of facing displacements and maximum reinforcement loads was less accurate for the very flexible geogrid wrapped-face wall. The discrepancies are believed to be related to the unusually flexible wrapped face used in the geogrid wall construction. Numerically predicted and measured maximum reinforcement loads are compared to loads using the AASHTO reinforcement strength-based design approach (Simplified Method) and the Simplified Stiffness Method which is an empirical reinforcement stiffness-based method. The paper provides physical test data that can be used to benchmark other numerical models, highlights lessons learned during the development of the models, and identifies reasonable expectations for numerical model accuracy for models of similar complexity used to simulate the performance of mechanically stabilized earth (MSE) wall structures under operational conditions.  相似文献   

2.
采用土工格栅加筋的方法提高废旧轮胎挡墙的承载性能,促进废旧轮胎挡墙的推广应用,通过数值计算方法分析了不同墙顶荷载下有无土工格栅加筋的废旧轮胎挡墙的水平变形与竖向沉降反应特征,得出铺设土工格栅加筋的方法可显著减小墙体的水平变形和竖向沉降,提高废旧轮胎挡墙结构的承载能力,随着外荷载的增加,墙体变形模式依次呈凹凸微小变化型、“弯弓”型、“似弯弓”型和“鼓腮”型和直线型。考虑土工格栅的加筋长度、竖向加筋间距以及格栅加筋刚度3种因素对废旧轮胎+土工格栅加筋土挡墙的水平变形的影响,得出在废旧轮胎加筋土挡墙设计中,建议土工格栅的加筋长度选取范围为0.5H~0.7H,土工格栅竖向间距的选取范围为0.4 m~0.7 m,格栅刚度不宜大于5 000 kN/m。  相似文献   

3.
The limit equilibrium (LE) analysis has been used to design MSE walls. Presumably, the deflection of MSE walls can be limited to an acceptable range by ensuring sufficient factors of safety (FOSs) for both external and internal stabilities. However, unexpected ground movements, such as movements induced by excavations, volume changes of expansive soils, collapse of sinkholes, and consolidations of underlying soils, can induce excessive differential settlements that may influence both the stability and the serviceability of MSE walls. In this study, a numerical model, which was calibrated by triaxial tests and further by a specially-designed MSE wall tests, investigated the behavior of an MSE wall as well as the influence of various factors on the performance of the MSE wall when the wall facing settled relatively to the reinforced zone. The numerical results showed that the differential settlement would cause substantial vertical and horizontal movements for the MSE wall, as well as an increase in lateral earth pressure and geosynthetic reinforcement strain. The maximum horizontal movement and increase of the lateral earth pressure occurred at about 1.0 m above the toe. The differential settlement resulted in a critical plane that coincided with the plane of 45°+?/2. The maximum increase of the strain for each geogrid layer occurred in that plane, and the bottom layer had the greatest strain increase among all layers of reinforcement. The study further indicated that the surcharge, backfill friction angle, tensile stiffness of geogrid, reinforcement length and MSE wall height had noticeable influences on horizontal and vertical movements, and strain in geosynthetics. According to the results, the MSE wall that had a higher factor of safety would have less movements and geosynthetic strain increase. In contrast, only the friction angle, tensile stiffness and MSE wall height showed some degree of influence on the lateral earth pressure due to differential settlements.  相似文献   

4.
This paper is to investigate the effectiveness of encapsulating geogrid layers within thin sand layers, for enhancing the deformation behavior of vertical reinforced soil walls constructed with marginal backfills. Centrifuge model tests were performed on vertical soil walls, reinforced with geogrid layers, using a 4.5 m radius large beam centrifuge available at IIT Bombay at 40 gravities. The backfill conditions, height of soil wall, reinforcement length, and reinforcement spacing, were kept constant in all the tests. A wrap-around technique was used to represent flexible facing. Three different geogrid types with varying stiffness were used in the present study. The walls were instrumented with vertical linear variable differential transformers to monitor surface settlements during the tests. Marker-based digital image analysis technique was used to determine face movements and distribution of geogrid strain along the wall height. The deformation behavior of soil walls, reinforced with geogrid layers encapsulated in thin layers of sand, were compared against a base model having no sand-cushioned geogrid layers. Provision of sand-cushioned geogrid layers and increase in geogrid stiffness were found to limit normalized face movements (Sf/H), normalized crest settlements (Sc/H), and change in maximum peak reinforcement strain (dεpmax). Sand-cushioned geogrid layers were also found to limit the development of tension cracks behind and within the reinforced zone. Significant reduction in rate of maximum face movement (dSfmax/dt) and rate of maximum peak reinforcement strain (dεpmax/dt) was observed, with an increase in value of normalized reinforcement stiffness (Jg/γH2) of geogrid layers. The analysis and interpretation of centrifuge model tests on soil walls, constructed with marginal backfills and reinforced with sand-cushioned geogrid layers, indicate that their performance is superior to the walls without sand-cushioned geogrid layers.  相似文献   

5.
This study analyses two full-scale model tests on mechanically stabilized earth (MSE) walls. One test was conducted with a rigid and one with a flexible wall face. Other parameters were the same in these two tests, like the number and type of geogrid layers, the vertical distance between the layers and the soil type. The loads and strains on the reinforcement are measured as function of the horizontal and vertical earth pressure and compared with analytical models. Specifics regarding the behavior of the geogrids under the compaction load during the construction of the model and under strip footing load are included in the study. Results are compared with AASHTO and the empirical K-stiffness method. In this study, an analytical method is developed for the MSE walls taking into account the facing panel rigidity both after backfill construction and after strip footing load. There is good agreement between the proposed analytical method and the experimental results considering the facing panel rigidity. The results indicate that the tensile force on reinforcement layers for rigid facing is less than the flexible facing. The maximum strains in the reinforcement layers occurred in the upper layers right below the strip footing load. The maximum wall deflection for the flexible facing is more than for the rigid facing. The maximum deflection was at the top of the wall for the rigid facing and occurred at z/H?=?0.81 from top of the wall for the flexible facing.  相似文献   

6.
《Soils and Foundations》2002,42(4):29-41
The use of a compressible layer such as expanded polystyrene blocks behind a rigid retaining wall and geogrid layers embedded in a dense granular backfill is examined as a reinforcement technique for retaining wall structures. The mobile model retaining walls adjacent to reinforced model specimens are subjected to different surcharge pressures, and are caused to move laterally to measure the lateral earth pressure during the wall movement. The coefficients of earth pressure at rest and active earth pressure are carefully inferred from test results. Three series of tests are conducted; one test series with expanded polystyrene blocks installed behind the wall, another with geogrid layers embedded within model specimens, and the last series with expanded polystyrene blocks installed behind the wall and geogrid layers fixed between two adjacent expanded polystyrene blocks and embedded within model specimens. The reductions in the earth pressure at rest and the active earth pressure due to various patterns of reinforcement are interpreted in relation to the concept of controlled yielding of compressible expanded polystyrene blocks, tensile strains induced along geogrid layers, fixity between expanded polystyrene blocks and geogrid layers, and a facing unit consisting of expanded polystyrene blocks.  相似文献   

7.
A finite difference method was employed to evaluate the effect of secondary reinforcement on the performance of Geosynthetic-Reinforced Retaining (GRR) walls. The two-dimensional numerical models used a Cap-Yield soil constitutive model to represent the behavior of backfill. The numerical model was first calibrated and verified by the measured results from a full-scale field test. A parametric study was then performed to investigate the effects of secondary reinforcement length, secondary reinforcement stiffness, secondary reinforcement connection, and secondary reinforcement layout. The numerical results show that an increase in secondary reinforcement length and stiffness can reduce the deflection of the GRR wall and the maximum tensile stress of primary reinforcement. The mechanical connection of secondary reinforcement can also reduce the wall facing deflection and result in relatively small maximum tensile stress and connection stress in the primary reinforcement as compared with no connection to the secondary reinforcement. In addition, a wall with fewer but longer secondary reinforcement layers at certain elevations had relatively smaller wall facing deflections than the baseline case. This comparison demonstrates that more optimal layout of secondary reinforcement exists that could further reduce the maximum wall facing deflections and create a better performing wall while the same or less amount of geosynthetic reinforcement material is used.  相似文献   

8.
Mechanically stabilized earth (MSE) retaining walls are popular for highway bridge structures. They have precast concrete panels attached to earth reinforcement. The panels are designed to have some lateral movement. However, in some cases, excessive movement and even complete dislocation of the panels have been observed. In this study, 3-D numerical modeling involving an existing MSE wall was undertaken to investigate various wall parameters. The effects of pore pressure, soil cohesion, earth reinforcement type and length, breakage/slippage of reinforcement and concrete strength, were examined. Results showed that the wall movement is affected by soil pore pressure and reinforcement integrity and length, and unaffected by concrete strength. Soil cohesion has a minor effect, while the movement increased by 13–20 mm for flexible geogrid reinforced walls compared with the steel grid walls. The steel grid stresses were below yielding, while the geogrid experienced significant stresses without rupture. Geogrid reinforcement may be used taking account of slippage resistance and wall movement. If steel grid is used, non-cohesive soil is recommended to minimize corrosion. Proper soil drainage is important for control of pore pressure.  相似文献   

9.
Monitoring was carried out during construction of a cast-in-situ concrete-rigid facing geogrid reinforced soil retaining wall in the Gan (Zhou)-Long (Yan) railway main line of China. The monitoring included the vertical foundation pressure and lateral earth pressure of the reinforced soil wall facing, the tensile strain in the reinforcement and the horizontal deformation of the facing. The vertical foundation pressure of reinforced soil retaining wall is non-linear along the reinforcement length, and the maximum value is at the middle of the reinforcement length, moreover the value reduces gradually at top and bottom. The measured lateral earth pressure within the reinforced soil wall is non-linear along the height and the value is less than the active lateral earth pressure. The distribution of tensile strain in the geogrid reinforcements within the upper portion of the wall is single-peak value, but the distribution of tensile strain in the reinforcements within the lower portion of the wall has double-peak values. The potential failure plane within the upper portion of the wall is similar to “0.3H method”, whereas the potential failure plane within portion of the lower wall is closer to the active Rankine earth pressure theory. The position of the maximum lateral displacement of the wall face during construction is within portion of the lower wall, moreover the position of the maximum lateral displacement of the wall face post-construction is within the portion of the top wall. These monitoring results of the behaviour of the wall can be used as a reference for future study and design of geogrid reinforced soil retaining wall systems.  相似文献   

10.
This paper presents a numerical study of maximum reinforcement tensile forces for geosynthetic reinforced soil (GRS) bridge abutments. The backfill soil was characterized using a nonlinear elasto-plastic constitutive model that incorporates a hyperbolic stress-strain relationship with strain softening behavior and the Mohr-Coulomb failure criterion. The geogrid reinforcement was characterized using a hyperbolic load-strain-time constitutive model. The GRS bridge abutments were numerically constructed in stages, including soil compaction effects, and then loaded in stages to the service load condition (i.e., applied vertical stress?=?200?kPa) and finally to the failure condition (i.e., vertical strain?=?5%). A parametric study was conducted to investigate the effects of geogrid reinforcement, backfill soil, and abutment geometry on reinforcement tensile forces at the service load condition and failure condition. Results indicate that reinforcement vertical spacing and backfill soil friction angle have the most significant effects on magnitudes of maximum tensile forces at the service load condition. The locus of maximum tensile forces at the failure condition was found to be Y-shaped. Geogrid reinforcement parameters have little effect on the Y-shaped locus of the maximum tensile forces when no secondary reinforcement layers are included, backfill soil shear strength parameters have moderate effects, and abutment geometry parameters have significant effects.  相似文献   

11.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

12.
Current design methods for the internal stability of geosynthetic-reinforced soil (GRS) walls postulate seismic forces as inertial forces, leading to pseudo-static analyses based on active earth pressure theory, which yields unconservative reinforcement loads required for seismic stability. Most seismic analyses are limited to the determination of maximum reinforcement strength. This study aimed to calculate the distribution of the reinforcement load and connection strength required for each layer of the seismic GRS wall. Using the top-down procedure involves all of the possible failure surfaces for the seismic analyses of the GRS wall and then obtains the reinforcement load distribution for the limit state. The distributions are used to determine the required connection strength and to approximately assess the facing lateral deformation. For sufficient pullout resistance to be provided by each reinforcement, the maximum required tensile resistance is identical to the results based on the Mononobe–Okabe method. However, short reinforcement results in greater tensile resistances in the mid and lower layers as evinced by compound failure frequently occurring in GRS walls during an earthquake. Parametric studies involving backfill friction angle, reinforcement length, vertical seismic acceleration, and secondary reinforcement are conducted to investigate seismic impacts on the stability and lateral deformation of GRS walls.  相似文献   

13.
To investigate the behavior of piles and the performance of the mechanically stabilized earth (MSE) walls under static and cyclic lateral loading, six reduced-scale model tests of single and group piles within the MSE walls were conducted inside a test box. In the single pile tests, a hollow aluminum tube as a pile was placed at a distance of 2D or 4D (D is pile diameter) behind the wall facing, while in the group pile tests, the piles were only placed at the distance of 2D with a spacing of 3.3D between the piles. The piles were subjected to static lateral loading only and cyclic lateral loading followed by static loading until failure. The test results showed that the lateral load capacity of each pile in the group pile test was approximately 60% that of the single pile, while the wall facing displacements and the geogrid strains in the group pile test were larger than those in the single pile test. The lateral pile capacity, the wall facing displacement, the strain in the geogrid, and the lateral earth pressure behind the wall facing in the static and cyclic loading tests were evaluated at the pile head displacement equal to 20%D.  相似文献   

14.
In this study, both two-dimensional (2D) and three-dimensional (3D) numerical analyses were carried out to evaluate the performance of geosynthetic-reinforced soil (GRS) piers. The numerical models were first calibrated and verified against test results available in the literature. A parametric study was then conducted under both 2D and 3D conditions to investigate the influences of reinforcement tensile stiffness, reinforcement vertical spacing, and a combination of reinforcement stiffness and spacing on the performance of GRS piers under vertical loading. Numerical results indicated that the effect of reinforcement spacing was more significant than that of reinforcement stiffness. The use of closely – spaced reinforcement layers resulted in higher global elastic modulus of the GRS pier, smaller lateral displacements of pier facing and volumetric change of the GRS pier, lower and more uniformly-distributed tension in the reinforcement, and larger normalized coefficients of lateral earth pressure. This study concluded that a 2D numerical model gave more conservative results than a 3D model.  相似文献   

15.
A scaled plane-strain shaking table test was conducted in this study to investigate the seismic performance of a Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) with a full-length bridge beam resting on two GRS abutments at opposite ends subjected to earthquake motions in the longitudinal direction. This study examined the effects of different combinations of reinforcement stiffness J and spacing Sv on the seismic performance of the GRS-IBS. Test results show that reducing the reinforcement spacing was more beneficial to minimize the seismic effect on the GRS abutment as compared to increasing the reinforcement stiffness. The seismic inertial forces acted on the top of two side GRS abutments interacted with each other through the bridge beam, which led to close peak acceleration amplitudes at the locations near the bridge beam. Overall, the GRS-IBS did not experience obvious structure failure and significant displacements during and after shaking. Shaking in the longitudinal direction of the bridge beam increased the vertical stress in the reinforced soil zone. The maximum tensile forces in the upper and lower geogrid layers due to shaking happened under the center of the beam seat and at the abutment facing respectively.  相似文献   

16.
土工格栅加筋土挡墙在土木工程中应用广泛,土工格栅的加筋作用以及筋材在挡墙设计中的计算需要进一步完善.利用FLAC3D有限元分析软件,对未设置和设置土工格栅加筋体的粉煤灰挡墙进行数值模拟分析,研究土工格栅的加筋作用对粉煤灰挡墙稳定性的影响,得到土工格栅加筋挡墙的设计参数.数值模拟结果表明:粉煤灰挡墙高度大于6m时,安全系数偏低,需要在粉煤灰挡墙中加筋来提高其安全系数,保证挡墙的稳定性.对墙高为8m的土工格栅粉煤灰加筋挡墙进行模拟分析,当增大加筋间距时,挡墙的侧向和竖向位移都增大,挡墙的最大竖向位移发生在挡墙的上部,最大侧向位移发生在挡墙中下部位;墙高为8m的土工格栅粉煤灰挡墙的合理加筋间距为0.8m.  相似文献   

17.
Reinforced subgrade for railways (RSR) is a construction method in which reinforced subgrade is constructed first and a rigid facing wall later to minimize the residual settlement after the service of a roadbed. The RSR was designed and constructed at Osong railway test line in Korea. In this study, load sharing capacities from the reinforced subgrade to the rigid facing wall of it were evaluated through long-term measurement, extending 22 months from the start of roadbed construction to the completion of track construction. Under the condition of 0.4 m geogrid vertical spacing installation, the load sharing proportion of horizontal earth pressure of the rigid facing wall was 9%–22% in the lower part, and lesser in the upper part. The strain of geogrid during construction was 0.607%, which was relatively lower than the designed geogrid tensile strain of 5%. The change in geogrid strain after construction was closely correlated with temperature change in the soil.  相似文献   

18.
The objective of this paper is to investigate the performance of geogrid reinforced soil walls with panel facing using marginal backfill with and without chimney sand drain subjected to seepage. A series of centrifuge model tests were performed at 40 gravities using a 4.5 m radius large beam centrifuge facility available at IIT Bombay. The results revealed that a geogrid reinforced soil wall with low stiffness geogrid and without any chimney drain experienced a catastrophic failure due to excess pore water pressure that developed in the reinforced and backfill zones at the onset of seepage. In comparison, a soil wall reinforced with stiff geogrid layers was found to perform effectively even at the onset of seepage. Provision of chimney sand drain effectively decreased pore water pressure not only at the wall toe but also at mid-distance from toe of the wall and thereby resulted in enhancing the wall performance under the effect of seepage forces. However, a local piping failure was observed near the toe region of the wall. The observed centrifuge test results were further analysed by performing seepage and stability analyses to evaluate the effect of thickness of sand layer in a chimney drain. An increase in thickness of sand layer in chimney drain was found to improve the discharge values and thereby enhancing the factor of safety against piping near the toe region. Based on the analysis and interpretation of centrifuge test results, it can be concluded that marginal soil can be used as a backfill in reinforced soil walls provided, it has geogrid layers of adequate stiffness and/or proper chimney drain configuration.  相似文献   

19.
以河北省保(定)沧(州)高速公路模块式土工格栅加筋石灰土挡墙为工程依托,以现场原型试验为手段,系统研究了该结构工作状态下的基底竖向土压力、墙面板背部侧向土压力和土工格栅拉筋应变分布规律。试验结果表明:基底竖向土压力沿筋长近似呈梯形分布,其大小一般小于理论值,最大值发生在墙背附近,且随竣工后时间的延续有下降的趋势;实测墙背侧向土压力沿墙高呈非线性增长分布,数值小于主动土压力;实测拉筋应变沿筋长呈单峰值分布,且数值均小于0.6%。试验结果可以为类似工程的设计、研究提供参考。  相似文献   

20.
蒋华福 《建筑技术》2010,41(8):767-769
对某工程土工格栅加筋挡土墙支护结构采用分离式有限元法建立模型,对加筋挡土墙进行计算,对影响加筋挡土墙工作性能的填土性质、加筋间距、加筋长度和筋材弹性模量等敏感参数进行分析,通过计算并和实际监测数据进行对比分析,得出其侧向变形敏感参数对其侧向变形的影响规律,为相关工程土工格栅加筋挡土墙的设计和施工提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号