首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the electrooxidation of ethanol on carbon supported Pt–Ru–Ni and Pt–Sn–Ni catalysts is electrochemically studied through cyclic voltammetry at 50 °C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt75Ru15Ni10/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials.  相似文献   

2.
Super-capacitor (SC) activated-carbon (AC) carbon-nanotubes (CNTs) (SC-AC-CNTs) is a kind of AC-based composite material and it combines the advantages of carbon nanotubes and activated carbon, including a series of peculiar properties such as low charge transmission resistance, super large specific area and excellent power characteristic. In this study, SC-AC-CNTs are first used to modify the carbon cloth (CC) anodes of microbial fuel cells (MFCs) and compared with that of SC-AC and CC. The measurements show that the specific surface area is increased from 219.519 m2 g?1 to 283.643 m2 g?1 after modification. The new anode is assembled in a urine-powered MFC (UMFC) to test its effectiveness. It is found that the amount of microorganisms attached on the new anode is much larger than that on the blank anode in UMFC. The maximum power densities of the UMFC assembled with SC-AC-CNTs and SC-AC modified anodes are 899.52 mW m?2 and 555.10 mW m?2, which are 2.9 and 1.8 times of that of the blank UMFC, respectively. The tests also shows that the UMFC with SC-AC-CNTs-modified anode creates a much longer duration of 105 h at high-voltage plateau in a single cycle that is about 2–3 times of the other two groups. These findings demonstrate that these two double layer capacitor materials can effectively boost overall MFC performance.  相似文献   

3.
A Ni–Fe alloy layer in combination with a cermet layer composed of Ni and yttria-stabilized zirconia (YSZ) cermet layer was explored as an anode for solid oxide fuel cells (SOFCs). The cell supported on the dual-layered anode with straight pore paths showed a maximum power density of 1070 mW cm?2 at 800 °C, while 737 mW cm?2 for the one supported on the anode with tortuous pore paths. Electrochemical impedance measurement and distribution of relaxation time analysis revealed that the straight pore paths allowed fast gas phase transport thus mitigating the concentration polarization, and improved the accessibility of electrochemical reaction sites hence reducing the activation polarization. The cell supported on the Ni-YSZ/Ni–Fe dual-layered anode remained intact after 8 redox cycles, whereas the cell supported on the Ni-YSZ single layered anode failed after one redox cycle. It is concluded that the Ni-YSZ/Ni–Fe dual-layered composite explored in the present study is suitable for use as the supporting anode for SOFCs.  相似文献   

4.
Ni alloys are examined as redox-resistant alternatives to pure Ni for solid oxide fuel cell (SOFC) anodes. Among the various candidate alloys, Ni–Co alloys are selected due to their thermochemical stability in the SOFC anode environment. Ni–Co alloy cermet anodes are prepared by ammonia co-precipitation, and their electrochemical performance and microstructure are evaluated. Ni–Co alloy anodes exhibit high durability against redox cycling, whilst the current-voltage characteristics are comparable to those of pure Ni cermet anodes. Microstructural observation reveals that cobalt-rich oxide layers on the outer surface of the Ni–Co alloy particles protect against further oxidation within the Ni alloy. In long-term durability tests using highly humidified hydrogen gas, the use of a Ni–Co cermet with Gd-doped CeO2 suppresses degradation of the power generation performance. It is concluded that Ni–Co alloy cermet anodes are highly attractive for the development of robust SOFCs.  相似文献   

5.
Formic acid (FA) electro-oxidation (FAO) was investigated at a binary catalyst composed of Pt (PtNPs) and Au (AuNPs) nanoparticles which were electrodeposited simultaneously onto a glassy carbon (GC) substrate. The catalytic activity of the binary modified catalyst toward FAO was significantly influenced by the relative molar ratio of PtNPs and AuNPs. Interestingly, the catalyst with a molar ratio (1:1) of PtNPs and AuNPs showed the highest activity toward the favorable pathway of FAO (ca. 26 times increase in the direct peak current concurrently with a ca. 133 mV negative shift in the onset potential). Such enhancement was believed originating from the outstanding improvement of charge transfer during FAO via the desirable “non-poisoning” pathway along with a significant mitigation of CO poisoning at the electrode surface. The diversity of techniques (cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction) employed in this investigation offered opportunities to assess and interpret the catalyst's activity and stability and to possess a deliberated overview about its morphology, composition and structure.  相似文献   

6.
Direct borohydride–hydrogen peroxide fuel cells (DBHPFCs) are attractive power sources for space applications. Although the cathode conditions are known to affect the system performance, the effect of the anode conditions is rarely investigated. Thus, in this study, a DBHPFC system was tested under various anode conditions, such as electrocatalyst, fuel concentration, and stabilizer concentration, to investigate their effects on the system performance. A virtual DBHPFC system was analyzed based on the experimental data obtained from fuel cell tests. The anode electrocatalyst had a considerable effect on the mass and electrochemical reaction rate of the fuel cell system, but had minimal effect on the decomposition reaction rate. The NaBH4 concentration greatly influenced the mass and decomposition reaction rate of the fuel cell system; however, it had minimal impact on the electrochemical reaction rate. The NaOH concentration affected the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system. Therefore, the significant effects of the anode conditions on the electrochemical reaction rate, decomposition reaction rate, and mass of the fuel cell system prompt the need for their careful selection through fuel cell tests and system analysis.  相似文献   

7.
A Cu/Ni/Sm-doped ceria (SDC) anode has been designed for direct utilization of dry methane in low-temperature anode-supported solid oxide fuel cells. The anode is prepared by the impregnation method, whereby a small amount of Cu is incorporated into the previously prepared Ni/SDC porous matrix. After reduction, Cu nanoparticles adhere to and are uniformly distributed on the surface of the Ni/SDC matrix. For the resulting Cu/Ni/SDC anode-supported cell, maximum power density of 317 mW cm−2 is achieved at 600 °C. The power density shows only ∼2% loss after 12-h operation. The results demonstrate that the Cu/Ni/SDC anode effectively suppresses carbon deposition by decreasing the Ni surface area available and the level of carbon monoxide disproportionation. This combination of effects results in very low-power density loss over the operating time.  相似文献   

8.
9.
To clearly illustrate the activity effect of multi-walled carbon nanotubes (MWCNTs) and their functionality on anodic exoelectrogen in microbial fuel cells (MFCs), the growth of E. coli and anode biofilm on MWCNT-, MWCNTCOOH and MWCNTNH2 modified anodes were compared with a bare carbon cloth anode. The activity effect was characterized by the amount of colony-forming units (CFUs), activity biomass, morphology of biofilms and cyclic voltammetric (CV). The results showed that MWCNTs, MWCNT-COOH and MWCNT-NH2 exhibited good biocompatibility on exoelectrogenic bacteria. The performance of MFCs were improved through the introduction of MWCNT-modified anodes, especially in the presence of COOH/NH2 groups. The MFCs with the MWCNTCOOHmodified anode achieved a maximum power density of 560.40 mW/m2, which was 49% higher than that obtained with pure carbon cloth. In conclusion, the positive effects of MWCNTs and their functionality were evaluated for promoting biofilm formation, biodegradation and electron transfer on anodes. Specifically, the MWCNTCOOHmodified anode demonstrated the largest application potential for the development of MFCs.  相似文献   

10.
Coking is a major issue with the traditional Ni-based anodes when directly oxidizing CH4 in solid oxide fuel cells (SOFCs). Dry reforming to convert CH4–CO2 into CO–H2 syngas before entering Ni-based anode may potentially be an effective and economical method to address the coking problem. Consequently, an on-cell reforming layer outside the Ni-based anode is expected to offer a unique solution for direct CH4–CO2 SOFCs without coking. In this study, Ni-GDC anode-supported cells with and without a Sr2Co0.4Fe1.2Mo0.4O6-δ (SCFM) layer outside the anode support have been fabricated and evaluated using either H2 or CH4–CO2 as fuel. Both types of cells show excellent electrochemical performance when H2 is used as fuel, and the SCFM layer has negligible impact on the cell performance. When CH4–CO2 is used as fuel, however, the electrochemical performance and durability of the cells with the SCFM layer are much better than those without the SCFM layer outside the Ni-GDC anode, indicating that the SCFM layer can efficiently perform dry reforming. This unique on-cell dry reforming design enables direct CH4–CO2 solid oxide fuel cells and offers a very promising route for energy storage and conversion.  相似文献   

11.
High dehydrogenation temperature and slow dehydrogenation kinetics impede the practical application of magnesium hydride (MgH2) serving as a potential hydrogen storage medium. In this paper, Fe–Ni catalyst modified three-dimensional graphene was added to MgH2 by ball milling to optimize the hydrogen storage performance, the impacts and mechanisms of which are systematically investigated based on the thermodynamic and kinetic analysis. The MgH2+10 wt%Fe–Ni@3DG composite system can absorb 6.35 wt% within 100 s (300 °C, 50 atm H2 pressure) and release 5.13 wt% within 500 s (300 °C, 0.5 atm H2 pressure). In addition, it can absorb 6.5 wt% and release 5.7 wt% within 10 min during 7 cycles, exhibiting excellent cycle stability without degradation. The absorption-desorption mechanism of MgH2 can be changed by the synergistic effects of the two catalyst materials, which significantly promotes the improvement of kinetic performance of dehydrogenation process and reduces the hydrogen desorption temperature.  相似文献   

12.
《Journal of power sources》2002,104(2):181-189
Ni–5 wt.% Al anodes for molten carbonate fuel cells (MCFCs) are fabricated using relatively cheap elemental powders instead of expensive alloy powders. The tape-cast green sheets are sintered in various atmospheres: reduction, full oxidation–reduction, and partial oxidation–reduction atmospheres. The anode sintered in a reduction atmosphere shows a morphology of a network structure of an NiAl solid solution with its surface covered with thin Al2O3 films, and has relatively low creep resistance. On the other hand, the anode sintered in a full oxidation–reduction atmosphere or the one sintered in a partial oxidation–reduction atmosphere has a morphology of small Al2O3 particles dispersed in a network structure. In the former, however, a large number of micropores are created during sintering. The latter does not have the micropore problem and generally exhibits high creep resistance. The highest creep resistance is shown by the anode sintered in a partial oxidation–reduction atmosphere with an oxidation time of 2.5 h.  相似文献   

13.
The paper addresses the effect of the carbon support on the microstructure and performance of Pt–Ru-based anodes for direct methanol fuel cells (DMFC), based on the study of four electrodes with a carbon black functionalized with HNO3, a mesoporous carbon (CMK-3), a physical mixture of TiO2 and carbon black and a reference carbon thermally treated in helium atmosphere (HeTT). It is shown that CMK-3 hinders the growth of the electrocatalyst nanoparticles (2.7 nm) and improves their distribution on the support surface, whereas the oxidized surfaces of HNO3 carbon and TiO2+carbon lead to larger (4–4.5 nm), agglomerated particles, and the lowest electrochemical active areas (54 and 26 m2 g−1, in contrast with 90 m2 g−1 for CMK-3), as determined from CO stripping experiments. However, HNO3 and TiO2 are characterized by the lowest CO oxidation potential (0.4 V vs. RHE), thus suggesting higher CO tolerance for the se electrodes. Tests in DMFC configuration show that the three modified electrodes have clearly better performance than the reference HeTT. The highest power density attained with electrodes supported on carbon treated with HNO3 (65 mW cm−2/300 mA cm−2 at 90 °C) and the equally interesting performance of the TiO2-based electrodes (53 mW cm−2/300 mA cm−2), is a strong indication of the positive effect of the presence of oxygenated groups on the methanol oxidation reaction. The results are interpreted in order to identify separate microstructural (electrocatalyst particle size, porosity) and compositional (oxygenated surface groups, presence of oxide phase) effects on the electrode performance.  相似文献   

14.
There is an ever – increasing demand for more powerful, compact and longer – life power modules for portable electronic devices for leisure, communication and computing. Micro fuel cells have the potential to replace battery packs for portable electronic appliances because of their high power density, longer operating and standby times, and substantially shorter recharging times. However, fuel cells have stringent operating requirements, including no fuel leakage, water formed in the electrochemical reactions, heat dissipation, robustness, easy and safe use, and reliability. Due to the large market potential, several companies are currently involved in the development of micro fuel cells. For application of fuel cells as a battery charger or in a battery replacement market, the cells require simplification in terms of their construction and operation and must have volumetric power densities equivalent to or better than those of existing battery power packs. This paper discusses results of investigation on methods and materials for direct hydrogen micro fuel cells as well as the lifetime performance of single cells and 2 We arrays. The paper also reviews the global technology development status for the direct hydrogen micro fuel cell and compares its salient features with other types of micro fuel cells.  相似文献   

15.
In this study, we propose an improvement in the sulfur tolerance of nickel-yttria stabilized zirconia (Ni-YSZ) anodes for solid oxide fuel cells (SOFCs) by simultaneously employing optimized operating conditions and microstructural modifications. An electrolyte supported SOFC is operated at 20 ppm H2S impurity at 750 °C for 20 h degradation and 10 h recovery test. The current cycles with a higher amplitude and small pulse time during the constant current operation are beneficial for the mitigation of sulfur poisoning. The effect of humidity on the sulfur degradation of Ni-YSZ anode is also studied. The synergetic effect of microstructure modification and current cycling conditions improves the sulfur tolerance of Ni-YSZ anode. It has been found that, when an anode with a modified microstructure by infiltrated CeO2 and Yb2O3 nanoparticles is operated on 20 ppm H2S poisoned gas at 10% relative humidity and the optimum pulsed current cycling conditions, about 7 times less degradation of the SOFC performance is observed. This study shows that at lower H2S concentration, a stable operation of a SOFC with minimum degradation can be achieved with the combination of optimization of operating conditions and modification of the anode microstructure.  相似文献   

16.
A novel anode consisting of Ni and Sm2O3 with negligible oxygen-ion conductivity was developed for intermediate-temperature solid oxide fuel cells (SOFCs). Its triple phase boundary length is pretty small compared with the conventional Ni-samaria doped ceria (SDC) anode, of which SDC is one of the electrolytes having high oxygen-ion conductivity. Even so, single cells with Ni–Sm2O3 anodes generated peak power density of 542 mW cm−2 at 600 °C, comparable to, if not higher than those with the Ni–SDC anodes when the same cathodes and electrolytes were applied. In addition, Ni–Sm2O3 exhibited lower interfacial polarization resistance than Ni–SDC. The high electrochemical performance, which might be related to the high catalytic activity of Sm2O3 and the unique microstructures of the Ni–Sm2O3, suggests a viable alternative to the conventional anodes for SOFCs.  相似文献   

17.
The support effect of carbon nanotubes (CNTs) for direct methanol fuel cell (DMFC) was studied using CNTs with and without defect preparation, carbon black, and fishbone-type CNTs. The Pt–Ru/defect-free CNTs afforded the highest catalytic activity of methanol oxidation reaction (MOR) in rotating disk electrode experiments and the highest performance as the anode catalysts in DMFC single cell tests with the one-half platinum loading compared to Pt–Ru/VulcanXC-72R. CO stripping voltammograms with Pt–Ru/defect-free CNTs also revealed the lowest CO oxidation potential among other Pt–Ru catalysts using different carbon support. It is thus considered that the carbon substrates significantly affect the CO oxidation activity of anode electrocatalysts in DMFC. This is ascribed to the geometrical effect that the flat interface between CNTs and metal catalysts has a unique feature, at which the electron transfer occurs, and this interface would modify the catalytic properties of Pt–Ru particles.  相似文献   

18.
Direct borohydride fuel cells (DBFCs) using liquid hydrogen peroxide as the oxidant are safe and attractive low temperature power sources for unmanned underwater vehicles (UUVs) as they have excellent energy and power density and do not feature compressed gases or a flammable fuel stream. One challenge to this system is the disparate pH environment between the anolyte fuel and catholyte oxidant streams. Herein, a bipolar interface membrane electrode assembly (BIMEA) is demonstrated for maintaining pH control of the anolyte and catholyte compartments of the fuel cell. The prepared DBFC with the BIMEA yielded a promising peak power density of 110 mW cm−2. This study also investigated the same BIMEA for a hydrogen–oxygen fuel cell (H2–O2 FC). The type of gas diffusion layer used and the gas feed relative humidity were found to impact fuel cell performance. Finally, a BIMEA featuring a silver electrocatalyst at the cathode in a H2–O2 FC was successfully demonstrated.  相似文献   

19.
To control the temperature distribution in the Ni–YSZ (yttria-stabilized zirconia) anode of solid oxide fuel cells (SOFCs) by efficiently utilizing the heat generated by electrochemical reactions, the supply of methane–ammonia mixed fuel is proposed. The reaction characteristics of reforming/decomposition of the mixed fuel on a Ni–YSZ catalyst are experimentally investigated. A mixture gas of methane, steam, ammonia, and balance argon is supplied to a packed bed catalyst placed in a quartz tube in an electric furnace. The crushed Ni–YSZ anode of SOFCs is used as the catalyst. The exhaust gas composition is analyzed by gas chromatography and the streamwise temperature distribution of the catalyst bed is measured by an infrared camera. It is found that ammonia decomposition preferentially proceeds and steam methane reforming becomes active after sufficient ammonia has been consumed. A low-temperature region is formed by steam methane reforming owing to its strongly endothermic nature. Its position moves downstream while its magnitude decreases as the ammonia concentration in the fuel increases. This shows that the local temperature distribution can be controlled by tuning the ratio of methane to ammonia in the mixed fuel. It is also found that, at a certain mixture ratio, the mixed fuel realizes a hydrogen production rate higher than that for only methane or ammonia.  相似文献   

20.
Au–Co alloys supported on Vulcan XC-72R carbon were prepared by the reverse microemulsion method and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties were investigated by energy dispersive X-ray (EDX), X-ray diffraction (XRD), cyclic voltammetry, chronamperometry and chronopotentiometry. The results show that supported Au–Co alloys catalysts have higher catalytic activity for the direct oxidation of BH4 than pure nanosized Au catalyst, especially the Au45Co55/C catalyst presents the highest catalytic activity among all as-prepared Au–Co alloys, and the DBHFC using the Au45Co55/C as anode electrocatalyst shows as high as 66.5 mW cm−2 power density at a discharge current density of 85 mA cm−2 at 25 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号