共查询到20条相似文献,搜索用时 15 毫秒
1.
《Geotextiles and Geomembranes》2019,47(5):662-670
This paper suggests as a rather simple and innovative alternative of the induced trench method with the use of geocomposite replacing EPS geofoam for protection of shallow buried pipes. Laboratory model tests and the numerical studies have been conducted on induced trenches constructed with relatively thin drainage geocomposite, as compressible layers, placed into sand. A parametric study using numerical modelling was conducted considering different arrangements of compressible layers in order to optimize the use of these geosynthetics in rehabilitation and maintenance of shallow buried pipes. It was concluded that geocomposites have compressibility enough to replace EPS using diminished area, which favor the applicability for shallow pipelines protection. Reduction on vertical soil pressures over the crown of the pipe reached values of 90%. The stress reduction at the crown was found to be significant affected by the width of the geocomposite and its distance from the crown of the pipe. The use of a more compressible condition of sand backfill provide more efficiency as far the geocomposite is from the crown of the pipe. Results from numerical modelling also indicate that using more than two geocomposite layers led to negligible stress reductions compared to one layer solution. 相似文献
2.
《Geotextiles and Geomembranes》2022,50(3):408-431
An analytical model is presented for the design of geosynthetic-reinforced and pile-supported (GRPS) embankments in this paper. The originality of the proposed solution lies in the fact that it allows considering the influence of the subsoil consolidation on the soil arching and geosynthetic strain. A nonlinear function is implemented to describe the subsoil behavior with the consolidation process in a closed-form solution. A simplified approach is then presented to link the arching development with the subsoil consolidation. The arching theory is combined with the tensioned membrane theory and the soil-structure interaction mechanisms to provide a simple and suitable design approach that enables a realistic approximation for designing soil–geosynthetic systems. The analytical model is capable of performing an ultimate and serviceability limit state design of GRPS embankments. While current methods cannot fully address the important effects of the subsoil consolidation, the analytical results suggested that arching and differential settlements increase with an increase of the subsoil consolidation degree. The analytical model is compared to field measurements and five other design standards for several full-scale field tests to study its validity. The results showed a satisfactory agreement between the proposed model and measured data, and generally better results are obtained as compared with other design methods. 相似文献
3.
《Geotextiles and Geomembranes》2022,50(6):1135-1146
The stress conditions of geosynthetic reinforcements (GRs) are crucial in achieving the accurate serviceability design of geosynthetic-reinforced pile-supported (GRPS) embankments. However, the sensitivity of load distribution to the settlement process has been reported in geosynthetic-reinforced embankment overlying cavities. In this study, a three-dimensional model embankment was used to perform experiments and evaluate the load acting on the GR. A flexible pressure-mapping sensor was introduced to investigate the pressure distribution for two types of supporting conditions: partitioned displacement by multiple movable trapdoors and even trapdoor settlement underneath different subsoil materials. The results showed that the load on the GR was concentrated on the strip areas between adjacent pile heads along with the settlement. The measured load on the GR strip area was related to the settlement process and finally exhibited a U-shaped distribution after detachment from the support underneath. The soil arch height in the subgrade continuously increased with the settlement; meanwhile, the pile head load increased rapidly at first and then decreased slightly or remained stable depending on the foundation support stiffness. For both types of settlement behaviours, soil arching exhibited stress history-related characteristics that influence the load transfer in GRPS embankments. 相似文献
4.
《Geotextiles and Geomembranes》2020,48(3):400-418
This paper reports full scale experiments, under simulated heavy traffic, of geocell and EPS (expanded polystyrene) geofoam block inclusions to mitigate the pressure on, and deformation of, shallow buried, high density polyethylene (HDPE) flexible pipes while limiting surface settlement of the backfilled trench. Geocell of two pocket sizes and EPS of different widths and thickness are used. Soil surface settlement, pipe deformation and transferred pressure onto the pipe are evaluated under repeated loading. The results show that using EPS may sometimes lead to larger surface settlements but can alleviate pressure onto the pipe and, consequentially, result in lower pipe deformations. This benefit is enhanced by the use of geocell reinforcement, which not only significantly opposes any EPS-induced increase in soil surface settlement, but further reduces the pressure on the pipe and its deformation to within allowable limits. For example, by using EPS geofoam with width 0.3 times, and thickness 1.5 times, pipe diameter simultaneously with geocell reinforcement with a pocket size 110 × 110 mm2 soil surface settlement, pipe deformation and transferred pressure around a shallow pipe were respectively, 0.60, 0.52 and 0.46 times those obtained in the fully unreinforced buried pipe system. This would represent a desirable and allowable arrangement. 相似文献
5.
《Geotextiles and Geomembranes》2020,48(1):1-23
The suitability of geocell reinforcement in reducing rut depth, surface settlements and/or pavement cracks during service life of the pavements supported on expanded polystyrene (EPS) geofoam blocks is studied using a series of large-scale cyclic plate load tests plus a number of simplified numerical simulations. It was found that the improvement due to provision of geocell constantly increases as the load cycles increase. The rut depths at the pavement surface significantly decrease due to the increased lateral resistance provided by the geocell in the overlying soil layer, and this compensates the lower competency of the underlying EPS geofoam blocks. The efficiency of geocell reinforcement depends on the amplitude of applied pressure: increasing the amplitude of cyclic pressure increasingly exploits the benefits of the geocell reinforcement. During cyclic loading application, geocells can reduce settlement of the pavement surface by up to 41% compared to an unreinforced case – with even greater reduction as the load cycles increase. Employment of geocell reinforcement substantially decreases the rate of increase in the surface settlement during load repetitions. When very low density EPS geofoam (EPS 10) is used, even though accompanied with overlying reinforced soil of 600 mm thickness, the pavement is incapable of tolerating large cyclic pressures (e.g. 550 kPa). In comparison with the unreinforced case, the resilient modulus is increased by geocell reinforcement by 25%, 34% and 53% for overlying soil thicknesses of 600, 500 and 400 mm, respectively. The improvement due to geocell reinforcement was most pronounced when thinner soil layer was used. The verified three-dimensional numerical modelings assisted in further insight regarding the mechanisms involved. The improvement factors obtained in this study allow a designer to choose appropriate values for a geocell reinforced pavement foundation on EPS geofoam. 相似文献
6.
Minh-Tuan Pham Laurent Briançon Daniel Dias Abdelkader Abdelouhab 《Geotextiles and Geomembranes》2018,46(5):611-624
Geosynthetic-reinforced soils constitute an interesting solution for bridging cavities. Many methods have been developed to analyze the stability of soil-geosynthetic-cavity systems, but none of them is able to take into account all the complexities of these mechanisms. Many researchers have assumed mechanisms developed in the reinforced granular platform when cavities appear, such as load transfer and expansion of materials. However, they are not fully understood because many factors can influence the design, such as the cavity opening processes, the type, and the density of the soil.In this study, a new laboratory apparatus is developed to simulate two different cavity opening procedures (trapdoor and progressive opening) for different geometric configurations. A series of tests is conducted for three granular soils with two different geosynthetic sheets. By measuring the shape of the surface soil settlement and the geosynthetic deflection, the expansion coefficient is calculated. A novel tactile pressure sensor is used to observe the load transfer during the cavity opening. The experimental data are analyzed and the influence of the experimental conditions (geometric and soil properties and the opening procedure) are also discussed. Correspondingly, elicited findings can be used to propose recommendations to improve the existing design methods. 相似文献
7.
The assumption with the biggest impact on the design of geosynthetic-reinforced soils above voids is the presence and degree of soil arching, which affects the predicted applied stress on the geosynthetic. A series of centrifuge tests were conducted to investigate the soil arching in geosynthetic-reinforced soils with measurements of the soil stresses and observation of soil and geosynthetic deformation used to infer the arching behaviour. Detailed analysis of the results showed that arching significantly reduces the stress at the base of the soil when a void forms; this mechanism is due to stress redistributions and not the formation of a physical arch as suggested in some models. A new method to reliably predict this reduction is proposed by calculating the coefficient of lateral stress on vertical failure planes based on the observations of a continuous convex arc of major principal strains above the void, and the assumption that this is indicative of the stress behaviour. 相似文献
8.
Understanding the stress regime that develops in the vicinity of reinforcements in reinforced soil masses may prove crucial to understanding, quantifying, and modeling the behavior of a reinforced soil structures. This paper presents analyses conducted to describe the evolution of stress and strain fields in a reinforced soil unit cell, which occur as shear stresses are induced at the soil-reinforcement interface. The analyses were carried out based on thorough measurements obtained when conducting soil-reinforcement interaction tests using a new large-scale device developed to specifically assess geosynthetic-reinforced soil behavior considering varying reinforcement vertical spacings. These experiments involved testing a geosynthetic-reinforced mass with three reinforcement layers: an actively tensioned layer and two passively tensioned neighboring layers. Shear stresses from the actively tensioned reinforcement were conveyed to the passively tensioned reinforcement layers through the intermediate soil medium. The experimental measurements considered in the analyses presented herein include tensile strains developed in the reinforcement layers and the displacement field of soil particles adjacent to the reinforcement layers. The analyses provided insights into the lateral confining effect of geosynthetic reinforcements on reinforced soils. It was concluded that the change in the lateral earth pressure increases with increasing reinforcement tensile strain and reinforcement vertical spacing, and it decreases with increasing vertical stress. 相似文献
9.
《Geotextiles and Geomembranes》2020,48(1):120-127
Three centrifuge model tests were conducted to investigate the influence of the number of geosynthetic layers and the pile clear spacing on the global performance of Geosynthetic-Reinforced Pile-Supported (GRPS) embankments with side slopes constructed on soft soil foundations. This study found that the change of the geogrid number from one to two did not significantly affect the foundation settlement, the geogrid deflection, and the vertical stress at the embankment base. For the GRPS embankment with a single geogrid layer, the geogrid strain distribution at the embankment base showed an “M” shape along the transverse direction with the maximum strain near the embankment shoulder. When two geogrid layers with sand in between were used, the upper and lower layers showed different strain distributions with the maximum strains happening near the embankment shoulder and at the center of the embankment for the upper and lower layers respectively. The strains of the upper geogrid were smaller than those of the lower geogrid. Smaller pile clear spacing reduced the geogrid deflection and the foundation settlement. Despite the change of the pile clear spacing, the progressive development of soil arching with the normalized displacement at the embankment base followed a similar trend without an obvious stress recovery stage. 相似文献
10.
《Geotextiles and Geomembranes》2019,47(3):389-401
Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform. 相似文献
11.
《Geotextiles and Geomembranes》2020,48(1):52-61
Given the limit studies on the behavior of GRPS embankments with different numbers of geosynthetic layers and pile caps in a triangular pattern, this paper conducted a series of three-dimensional (3-D) numerical analyses. The numerical model was verified based on a well-instrumented large-scale test. A 3-D soil arch model was proposed for pile caps in a triangular pattern, in which the crown of the upper boundary was approximately 1.4 times the clear spacing of pile caps. Inclusion of geosynthetic reinforcement reduced the soil arching effect but increased the total load carried by the piles. For the case with three geosynthetic layers, the lower layer had a significant effect on load transfer than the middle and upper layers, but each layer had an almost proportional effect on mitigating the differential settlement on the top of the gravel cushion. The maximum strains in the reinforcement concentrated on the geosynthetic strips bridging over two adjacent square cap corners. 相似文献
12.
Anand J. Puppala Pinit Ruttanaporamakul Surya Sarat Chandra Congress 《Geotextiles and Geomembranes》2019,47(3):295-305
This paper presents a research study on a bridge site located along US highway 67 over SH 174 in Cleburne, Texas, where bridge approach slabs have experienced more than 0.4 m (17 in.) of settlement within a span of 16 years after construction. Many treatment methods attempted to mitigate this problem had proven to be ineffective. As part of novel rehabilitation works, the top of existing fill soil on the embankment was replaced with lightweight expanded polystyrene (EPS) geofoam blocks to alleviate the approach slab settlements. This paper describes initial design and construction details of the rehabilitation works performed on the embankment system along with a focus on the early performance details. Field monitoring studies were conducted for almost three years to study the bump/settlements under the EPS geofoam embankment system. Short term measured settlement data was analyzed with hyperbolic model to predict the long term settlements. Numerical finite element studies attempted in this study showed that settlements could be reasonably predicted by modeling these geofoam embankments. Based on the monitoring and modeling studies, the effectiveness of utilizing EPS geofoam as an embankment fill material was addressed to mitigate the differential settlements under a bridge approach slab. 相似文献
13.
The response of a buried structure to a surface loading is analyzed by a relatively simplistic model, yet comprehensive enough to delineate both wave propagation phenomena and effects of soil arching. Analysis of a buried circular plate response under surface impulsive loading, according to this model (which shows a good agreement with the theoretical predictions to the experimental results) enables an insight to the problem's full range, from very short impulse load to long, quasi-static loading. Application of this solution to a study case shows that both wave propagation related phenomena and the arching phenomenon (related to relative displacements in the soil above the structure) may be involved in the system's response to surface impact loading. Hence, a general analysis of a buried structure's response to dynamic surface loading should consider not only the wave propagation effects, but also take into account the soil arching effect. 相似文献
14.
《Geotextiles and Geomembranes》2020,48(5):684-690
This paper proposes a method to predict the lateral earth pressures on nonyielding retaining walls with geofoam inclusions. The previous study of the lateral stress-strain relation of the backfill was extended, and the solution was derived by the iterative method. The proposed solution could be applied without the known value of the compression of the geofoam inclusions. Model tests for nonyielding retaining walls with expanded polystyrene (EPS) geofoam were also conducted to investigate lateral earth pressures. The accuracy of the proposed solution was verified by comparison to test data in the absence of surface loading. The proposed solution was also validated by a previous study of laboratory-scale model tests with surface loading as well as numerical simulations for field-scale applications with a vehicle load. Furthermore, the effect of the density and thickness of EPS on the reduction of lateral earth pressures was discussed, and appropriate design parameters of EPS were suggested for nonyielding retaining walls with EPS geofoam. 相似文献
15.
《岩石力学与岩土工程学报(英文版)》2020,12(1):197-211
The paper focusses on the use of physical modelling in ground movements (induced by underground cavity collapse or mining/tunnelling) and associated soil-structure interaction issues. The paper presents first an overview of using 1g physical models to solve geotechnical problems and soil-structure interactions related to vertical ground movements. Then the 1g physical modelling application is illustrated to study the development of damage in masonry structure due to subsidence and cavity collapse. A large-scale 1g physical model with a 6 m3 container and 15 electric jacks is presented with the use of a three-dimensional (3D) image correlation technique. The influence of structure position on the subsidence trough is analysed in terms of crack density and damage level. The obtained results can improve the methodology and practice for evaluation of damage in masonry structures. Nevertheless, ideal physical model is difficult to achieve. Thus, future improvement of physical models (analogue materials and instrumentation) could provide new opportunities for using 1g physical models in geotechnical and soil-structure applications and research projects. 相似文献
16.
在补水条件下,对4种聚苯乙烯(EPS)颗粒掺量的复合填料试样施加3种冷端温度(-5,-10,-15℃)冻结,开展水分迁移及冻胀特性测试与分析.研究了冻结作用下复合填料温度分布特征、水分迁移规律和冻胀变形特性,基于温度场和水分场的相关性分析了复合填料抗冻胀破坏机理.结果表明,一定程度地增加EPS颗粒含量,会使复合填料冻结温度与热阻提高,温度传导、冻结锋面移动速率以及冻结深度递减,已冻区含水率增量变小,冻结锋面和未冻区含水率增量变大,冻胀量减少,有助于缓解冻胀破坏.TIF颗粒掺量为0.5%~1.0%(质量分数)时,复合填料抗冻胀性能较好.抗冻胀机制与EPS颗粒的隔热、阻水和吸纳作用有关. 相似文献
17.
《Geotextiles and Geomembranes》2020,48(4):572-580
This paper examines the effect of the mobilized reinforcement tension within reinforced soil slope at a different level of soil-geosynthetic interaction. The mobilized reinforcement tension is assumed, in most design methods for the internal stability of reinforced slopes, to be equal to mobilized soil forces computed using a limit equilibrium method. However, comparison with the reinforcement tension force measured in the field has shown that this approach is conservative. This paper examines the effects of the soil-reinforcement interaction coefficient on the tensile redistribution of geosynthetics. The modified process of Bishop Method of slope stability analysis is used to locate the critical slip surface and to calculate the mobilized reinforcement tensile force. The reinforcement forces obtained from field data and on centrifuge model test results for a reinforced slope problem are used to examine the relationship between mobilized reinforcement tensile force and mobilized soil shear strength. 相似文献
18.
Prishati Raychowdhury 《Engineering Structures》2011,33(3):958-967
Nonlinear behavior at the soil-foundation interface due to mobilization of the ultimate capacity and the associated energy dissipation, particularly in an intense earthquake event, may be utilized to reduce the force and ductility demands of a structure, provided that the potential consequences such as excessive settlement are tackled carefully. This study focuses on modeling this nonlinear soil-structure interaction behavior through a beam-on-nonlinear-Winkler-foundation (BNWF) approach. The results are compared with those from fixed-base and elastic-base models. It is observed that the force and displacement demands are reduced significantly when the foundation nonlinearity is accounted for. Moreover, the foundation compliance is also found to have a significant effect on the structural response. 相似文献
19.
《Geotextiles and Geomembranes》2021,49(5):1380-1392
Expansion of bridge girders in summer moves integral bridge abutments toward backfill, causing high lateral earth pressures behind the abutment. Some backfill material slumps downward and toward the abutment when the abutment moves away from the backfill due to bridge girder contraction in winter. Placement of geogrids within the backfill can increase stability of the backfill while placement of compressible inclusions (e.g., Expanded Polystyrene (EPS) foam) can reduce lateral earth pressures behind the abutment caused by bridge girder expansion. In this study, six physical model tests were conducted with 30 abutment top movement cycles due to simulated seasonal temperature changes to study the performance of integral bridge abutments with different mitigation measures. The test results showed that geogrid reinforcements caused higher maximum lateral earth pressures at the same abutment movement, but geogrids with wrap-around facing significantly reduced the backfill surface settlements. The combination of the EPS foam and geogrids could minimize lateral earth pressure increase and backfill settlement. The EPS foam reduced the abutment toe outward movement when the abutment top was pushed against the backfill; however, the mitigation effects by the EPS foam was limited due to its small thickness and relatively high elastic modulus in this study. 相似文献
20.
《Thin》2013
An L frame made up by beam and column having channel cross sections, has been analyzed in a previous work by two of the authors [14]. Depending on the aspect ratio and the joint configuration, it has been proved that the structure can exhibit two simultaneous buckling modes. Here using the asymptotic theory of elastic bifurcation that takes into account mode interaction, the initial slope of the bifurcated paths has been determined. Three cases of joint configurations, which are the more common used in welded connections, have been considered. For each case three admissible bifurcated paths have been found. Two of them show a slope having the same order of magnitude of the ones found in the absence of mode interaction while the remaining exhibits a slope largely steepest. Selecting, for each joint case, the bifurcated path with the higher slope and between them the smallest one, it is found that it is associated to the path which bifurcates at the higher critical load. This means that the stiffer structure is also the less imperfection sensitive. Finally for each one of the cases studied, the effect of initial imperfection has been considered and the real load carrying capacity of the frames has been determined. Finally some results have been compared with those obtained using the FE code ABAQUS. 相似文献