首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.  相似文献   

2.
In this study the genetic association during lactation of 2 clinical mastitis (CM) traits: CM1 (7 d before to 30 d after calving) and CM2 (31 to 300 d after calving) with test-day somatic cell score (SCS) and milk yield (MY) was assessed using multitrait random regression sire models. The data analyzed were from 27,557 first-lactation Finnish Ayrshire cows. Random regressions on second- and third-order Legendre polynomials were used to model the daily genetic and permanent environmental variances of test-day SCS and MY, respectively, while only the intercept term was fitted for CM. Results showed that genetic correlations between CM and the test-day traits varied during lactation. Genetic correlations between CM1 and CM2 and test-day SCS during lactation varied from 0.41 to 0.77 and from 0.34 to 0.71, respectively. Genetic correlations of test-day MY with CM1 and CM2 ranged from 0.13 to 0.51 and from 0.49 to 0.66, respectively. Correlations between CM1 and SCS were strongest during early lactation, whereas correlations between CM2 and SCS were strongest in late lactation. Genetic correlations lower than unity indicate that CM and SCS measure different aspects of the trait mastitis. Milk yield in early lactation was more strongly correlated with both CM1 and CM2 than milk yield in later lactation. This suggests that selection for higher lactation MY through selection on increased milk yield in early lactation will have a more deleterious effect on genetic resistance to mastitis than selection for higher yield in late lactation. The approach used in this study for the estimation of the genetic associations between test-day and CM traits could be used to combine information from traits with different data structures, such as test-day SCS and CM traits in a multitrait random regression model for the genetic evaluation of udder health.  相似文献   

3.
4.
A genetic evaluation system was developed for 5 fertility traits of dairy cattle: interval from first to successful insemination and nonreturn rate to 56 d of heifers, and interval from calving to first insemination, nonreturn rate to 56 d, and interval first to successful insemination of cows. Using the 2 interval traits of cows as components, breeding values for days open were derived. A multiple-trait animal model was applied to evaluate these fertility traits. Fertility traits of later lactations of cows were treated as repeated measurements. Genetic parameters were estimated by REML. Mixed model equations of the genetic evaluation model were solved with preconditioned conjugate gradients or the Gauss-Seidel algorithm and iteration on data techniques. Reliabilities of estimated breeding values were approximated with a multi-trait effective daughter contribution method. Daughter yield deviations and associated effective daughter contributions were calculated with a multiple trait approach. The genetic evaluation software was applied to the insemination data of dairy cattle breeds in Germany, Austria, and Luxembourg, and it was validated with various statistical methods. Genetic trends were validated. Small heritability estimates were obtained for all the fertility traits, ranging from 1% for nonreturn rate of heifers to 4% for interval calving to first insemination. Genetic and environmental correlations were low to moderate among the traits. Notably, unfavorable genetic trends were obtained in all the fertility traits. Moderate to high correlations were found between daughter yield-deviations and estimated breeding values (EBV) for Holstein bulls. Because of much lower heritabilities of the fertility traits, the correlations of daughter yield deviations with EBV were significantly lower than those from production traits and lower than the correlations from type traits and longevity. Fertility EBV were correlated unfavorably with EBV of milk production traits but favorably with udder health and longevity. Integrating fertility traits into a total merit selection index can halt or reverse the decline of fertility and improve the longevity of dairy cattle.  相似文献   

5.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.  相似文献   

6.
Reduced potential milk yield is an important component of mastitis costs in dairy cows. The first aim of this study was to assess associations between somatic cell count (SCC) during the first lactation, and cumulative milk yield over the first lactation and subsequent lifetime of cows in Irish dairy herds. The second aim was to assess the association between SCC at 5 to 30 d in milk during parity 1 (SCC1), and SCC over the entire first lactation for cows in Irish dairy herds. The data set studied included records from 51,483 cows in 5,900 herds. Somatic cell count throughout the first lactation was summarized using the geometric mean and variance of SCC. Data were analyzed using linear models that included random effects to account for the lack of independence between observations, and herd-level variation in coefficients. Models were developed in a Bayesian framework and parameters were estimated from 10,000 Markov chain Monte Carlo simulations. The final models were a good fit to the data. A 1-unit increase in mean natural logarithm SCC over the first lactation was associated with a median decrease in first lactation and lifetime milk yield of 135 and 1,663 kg, respectively. A 1-unit increase in the variance of natural logarithm SCC over the first lactation was associated with a median decrease in lifetime milk yield of 719 kg. To demonstrate the context of lifetime milk yield results, microsimulation was used to model the trajectory of individual cows and evaluate the expected outcomes for particular changes in herd-level geometric mean SCC over the first lactation. A 75% certainty of savings of at least €199/heifer in the herd was detected if herd-level geometric mean SCC over the first lactation was reduced from ≥120,000 to ≤72,000 cells/mL. The association between SCC1 and SCC over the remainder of the first lactation was highly herd dependent, indicating that control measures for heifer mastitis should be preferentially targeted on an individual-herd basis toward either the pre- and peripartum period, or the lactating period, to optimize the lifetime milk yield of dairy cows.  相似文献   

7.
The aim of this study was to investigate the associations between differential somatic cell count (DSCC) and milk quality and udder health traits, and for the first time, between DSCC and milk coagulation properties and cheesemaking traits in a population of 1,264 Holstein cows reared in northern Italy. Differential somatic cell count represents the combined proportions of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in the total somatic cell count (SCC), with macrophages (MAC) making up the remaining proportion. The milk traits investigated in this study were milk yield (MY), 8 traits related to milk composition and quality (fat, protein, casein, casein index, lactose, urea, pH, and milk conductivity), 9 milk coagulation traits [3 milk coagulation properties (MCP) and 6 curd firming (CF) traits], 7 cheesemaking traits, 3 cheese yield (CY) traits, and 4 milk nutrient recovery in the curd (REC) traits. A linear mixed model was fitted to explore the associations between SCS combined with DSCC and the aforementioned milk traits. An additional model was run, which included DSCC expressed as the PMN-LYM and MAC counts, obtained by multiplying the percentage of PMN-LYM and MAC by SCC in the milk for each cow in the data set. The unfavorable association between SCS and milk quality and technological traits was confirmed. Increased DSCC was instead associated with a linear increase in MY, casein index, and lactose proportion and a linear decrease in milk fat and milk conductivity. Accordingly, DSCC was favorably associated with all MCP and CF traits (with the exception of the time needed to achieve maximum, CF), particularly with rennet coagulation time, and it always displayed linear relationships. Differential somatic cell count was also positively associated with the recovery of milk nutrients in the curd (protein, fat, and energy), which increased linearly with increasing DSCC. The PMN-LYM count was rarely associated with milk traits, even though the pattern observed confirmed the results obtained when both SCS and DSCC were included in the model. The MAC count, however, showed the opposite pattern: MY, casein index, and lactose percentage decreased and milk conductivity increased with an increasing MAC count. No significant association was found between PMN-LYM count and MCP, CF, CY, and REC traits, whereas MAC count was unfavorably associated with MCP, CF traits, some CY traits, and all REC traits. Our results showed that the combined information derived from SCS and DSCC might be useful to monitor milk quality and cheesemaking-related traits.  相似文献   

8.
The objectives of this study were to examine genetic associations between clinical mastitis and somatic cell score (SCS) in early first-lactation cows, to estimate genetic correlations between SCS of cows with and without clinical mastitis, and to compare genetic evaluations of sires based on SCS or clinical mastitis. Clinical mastitis records from 15 d before to 30 d after calving and first test-day SCS records (from 6 to 30 d after calving) from 499,878 first-lactation daughters of 2,043 sires were analyzed. Results from a bivariate linear sire model analysis of SCS in cows with and without clinical mastitis suggest that SCS is a heterogeneous trait. Heritability of SCS was 0.03 for mastitic cows and 0.08 for healthy cows, and the genetic correlation between the 2 traits was 0.78. The difference in rank between sire evaluations based on SCS of cows with and without clinical mastitis varied from −994 to 1,125, with mean 0. A bivariate analysis with a threshold-liability model for clinical mastitis and a linear Gaussian model for SCS indicated that heritability of liability to clinical mastitis is at least as large as that of SCS in early lactation. The mean (standard deviation) of the posterior distribution of heritability was 0.085 (0.006) for liability to clinical mastitis and 0.070 (0.003) for SCS. The posterior mean (standard deviation) of the genetic correlation between liability to clinical mastitis and SCS was 0.62 (0.03). A comparison of sire evaluations showed that genetic evaluation based on SCS was not able to identify the best sires for liability to clinical mastitis. The association between sire posterior means for liability to clinical mastitis and sire predicted transmitting ability for SCS was far from perfect.  相似文献   

9.
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for management purposes. The potential of the TD model for management use depends on its ability to describe within- or between-herd variation that can be linked to specific management practices. The aim of this study was to estimate variance components for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in the Ragusa and Vicenza areas of Italy, such that the most relevant sources of variation can be identified for the development of management parameters. The available data set contained 1,080,637 TD records of 42,817 cows in 471 herds. Variance components were estimated with a multilactation, random-regression, TD animal model by using the software adopted by NRS for the Dutch national genetic evaluation. The model comprised 5 fixed effects [region × parity × days in milk (DIM), parity × year of calving × season of calving × DIM, parity × age at calving × year of calving, parity × calving interval × stage of pregnancy, and year of test × calendar week of test] and random herd × test date, regressions for herd lactation curve (HCUR), the animal additive genetic effect, and the permanent environmental effect by using fourth-order Legendre polynomials. The HCUR variances for milk and protein yields were highest around the time of peak yield (DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant throughout first lactation and decreased following the peak around 40 to 90 DIM for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared with the genetic, permanent environmental, and residual variances. For all the traits except SCS, the variance explained by random herd × test date was much smaller than the HCUR variance, which indicates that the development of management parameters should focus on between-herd parameters during peak lactation for milk and milk components. For SCS, the within-herd variance was greater than the between-herd variance, suggesting that the focus should be on management parameters explaining variances at the cow level. The present study showed clear evidence for the benefits of using a random regression TD model for management decisions.  相似文献   

10.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

11.
In this study, we aimed to estimate and compare the genetic parameters of dry matter intake (DMI), energy-corrected milk (ECM), and body weight (BW) as 3 feed efficiency–related traits across lactation in 3 dairy cattle breeds (Holstein, Nordic Red, and Jersey). The analyses were based on weekly records of DMI, ECM, and BW per cow across lactation for 842 primiparous Holstein cows, 746 primiparous Nordic Red cows, and 378 primiparous Jersey cows. A random regression model was applied to estimate variance components and genetic parameters for DMI, ECM, and BW in each lactation week within each breed. Phenotypic means of DMI, ECM, and BW observations across lactation showed to be in very similar patterns between breeds, whereas breed differences lay in the average level of DMI, ECM, and BW. Generally, for all studied breeds, the heritability for DMI ranged from 0.2 to 0.4 across lactation and was in a range similar to the heritability for ECM. The heritability for BW ranged from 0.4 to 0.6 across lactation, higher than the heritability for DMI or ECM. Among the studied breeds, the heritability estimates for DMI shared a very similar range between breeds, whereas the heritability estimates for ECM tended to be different between breeds. For BW, the heritability estimates also tended to follow a similar range between breeds. Among the studied traits, the genetic variance and heritability for DMI varied across lactation, and the genetic correlations between DMI at different lactation stages were less than unity, indicating a genetic heterogeneity of feed intake across lactation in dairy cattle. In contrast, BW was the most genetically consistent trait across lactation, where BW among all lactation weeks was highly correlated. Genetic correlations between DMI, ECM, and BW changed across lactation, especially in early lactation. Energy-corrected milk had a low genetic correlation with both DMI and BW at the beginning of lactation, whereas ECM was highly correlated with DMI in mid and late lactation. Based on our results, genetic heterogeneity of DMI, ECM, and BW across lactation generally was observed in all studied dairy breeds, especially for DMI, which should be carefully considered for the recording strategy of these traits. The genetic correlations between DMI, ECM, and BW changed across lactation and followed similar patterns between breeds.  相似文献   

12.
Genetic parameters have been estimated in the Black-Face ecotype of the Latxa breed for udder type traits (udder depth and attachment and teat placement and size) at first or later lactations (considered as different traits), as well as for udder type traits, milk yield, and lactational somatic cell score, including all lactations. Genetic correlations between udder type traits at first or later lactations ranged from 0.85 and 0.95 suggesting that they are nearly identical traits. Udder type traits had moderate heritabilities. Milk yield was estimated to have a genetic correlation of 0.43 with udder depth, 0.10 with udder attachment, −0.25 with teat placement, and −0.10 with teat size, which were unfavorable in general. Genetic correlations of lactational somatic cell score were 0.10 with udder depth, −0.27 with udder attachment, −0.01 with teat placement, and 0.29 with teat size. Genetic correlations between lactational somatic cell score and udder type traits show that udders with good shape are less prone to subclinical mastitis.  相似文献   

13.
The aim of the present study was to assess genetic variation and heritability of a novel indicator of udder health, milk differential somatic cell count (DSCC), which represents the percentage of neutrophils plus lymphocytes in the total somatic cell count (SCC). Furthermore, we estimated genetic and phenotypic correlations of DSCC with other milk traits routinely measured in Italian Holstein cows. Besides DSCC, test-day data included milk yield, composition traits (i.e., fat, protein, casein, and lactose percentages), pH, milk urea nitrogen, and SCC. After editing, the final data set included 10,709 test-day records of 5,142 cows in 299 herds. Mean of DSCC was 62.07%, which means that macrophages were approximately 38% of total SCC. Comparing our results with the literature offered compelling evidence of the importance of acquiring information about the proportion of the different cell types in milk to better define the udder health status. In addition, our analysis revealed, for the first time, that DSCC is a heritable trait, and heritability (0.08 ± 0.02) was higher than that of traditional somatic cell score (0.04 ± 0.02). Nevertheless, heritability of DSCC is still low compared with milk yield and quality traits. Single-trait analysis within parity showed that DSCC was less heritable in primiparous than in multiparous cows, whereas bivariate analysis confirmed that DSCC and somatic cell score were 2 different traits, as their genetic and phenotypic correlations differed from unity. From a genetic point of view, the DSCC was positively weakly associated with milk yield, lactose percentage, and milk urea nitrogen, and negatively associated with pH. Our findings contributed to the understanding of the genetic background of DSCC and are a precursor to the potential use of DSCC in breeding programs to enhance cow resistance to mastitis. However, further research is needed to determine the weight this novel trait should receive in a selection program aimed to reduce udder health problems.  相似文献   

14.
《Journal of dairy science》2019,102(12):11777-11785
Heat stress abatement is a challenge for dairy producers in the United States, especially in the southern states. Thus, managing heat stress is critical to maintain dairy cow performance in the summer. The ability to employ a metric to measure heat stress and evaluate abatement strategies may benefit dairy producers by providing meaningful feedback on the effectiveness of current and future management strategies with the goal of improving heat stress management. Therefore, this study aimed to explore the use of the summer to winter performance ratio metric to quantify and compare farm performance variables among regions of the United States. Monthly performance data recorded by the Dairy Herd Improvement Association from 2007 to 2016, for all US Dairy Herd Improvement Association herds processing records through Dairy Records Management Systems (Raleigh, NC), were obtained. Season dates were based on the astronomical definition of the Northern Hemisphere with summer as June 21 to September 21 and winter as December 21 to March 19. States were grouped into regions based on climate zone classification. Performance records included a total of 16,573 herds [Northeast (n = 7,955), Midwest (n = 6,555), Northern Plains (n = 305), Southeast (n = 1,370), and Southern Plains (n = 388) regions]. Herd test day performance variables energy-corrected milk, somatic cell score, milk fat and protein percentage, conception rate, heat detection rate, and pregnancy rate in summer and winter were used to calculate summer to winter ratios for each region. The MIXED procedure of SAS 9.4 (SAS Institute Inc., Cary, NC) was used to compare test day performance variables. The effects of year, mean days in milk, mean 150-d milk, mean herd size, and number of milkings per day were included as covariates in the models. Dairy cattle performance in all climate regions was negatively affected by summer heat stress, but some regions greater than others. A difference was also observed among regions when comparing summer to winter ratios for each performance parameter. This indicates that summer performance varies by climate region identified by the summer to winter ratio and demonstrates usefulness of the metric to monitor degree of heat stress based on performance.  相似文献   

15.
Using a mixed linear animal model, genetic parameters were estimated for clinical mastitis (MAST), lactation average somatic cell score (LSCS), and milk production traits in the first 3 lactations of more than 200,000 Swedish Holstein cows with first calving from 1995 to 2000. Heritability estimates for MAST (0.01 to 0.03) were distinctly lower than those for LSCS (0.10 to 0.14) and production traits (0.23 to 0.36). The genetic correlation between MAST and LSCS was high for all lactations (mean 0.70), implying that selection for low LSCS will reduce the incidence of mastitis. Undesirable genetic relationships with production were found for both MAST and LSCS with genetic correlations ranging from 0.01 to 0.45. This emphasizes the need for including udder health traits in the breeding goal. Genetic correlations across lactations for the same trait were positive and high for both MAST (>0.7), LSCS (>0.8), and production traits (>0.9), with the strongest correlations between second and third parity for all traits (>0.9 for udder health traits and close to unity for production traits).  相似文献   

16.
《Journal of dairy science》2022,105(8):6447-6459
Udder health in dairy herds is a very important issue given its implications for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most widely used means of assessing udder health status. However, differential somatic cell count (DSCC) has recently been proposed as a new and more effective means of evaluating intramammary infection dynamics. Differential SCC represents the combined percentage of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) in the total SCC, with macrophages (MAC) accounting for the remaining proportion. The aim of this study was to evaluate the association between SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A validated reversed-phase HPLC method was used to quantify 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin, which were expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations between somatic cell score (SCS) combined with DSCC and the protein fractions expressed quantitatively and qualitatively. We ran an additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the protein fractions were expressed as grams per liter, SCS was significantly negatively associated with almost all the casein fractions and positively associated with the whey protein α-lactalbumin, while DSCC was significantly associated with αS1-CN, β-CN, and α-lactalbumin, but in the opposite direction to SCS. We observed the same pattern with the qualitative data (i.e., %N), confirming opposite effects of SCS and DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits of concern, although the pattern observed was the same as when both SCS and DSCC were included in the model. The MAC count, however, generally had a greater impact on many casein fractions, in particular decreasing both β-CN content (g/L) and proportion (%N), and exhibited the opposite pattern to the PMN-LYM count. Our results show that information obtained from both SCS and DSCC may be useful in assessing milk quality and protein fractions. They also demonstrate the potential of MAC count as a novel udder health trait.  相似文献   

17.
Several selection criteria for reducing incidence of mastitis were developed from a random regression sire model for test-day somatic cell score (SCS). For comparison, sire transmitting abilities were also predicted based on a cross-sectional model for lactation mean SCS. Only first-crop daughters were used in genetic evaluation of SCS, and the different selection criteria were compared based on their correlation with incidence of clinical mastitis in second-crop daughters (measured as mean daughter deviations). Selection criteria were predicted based on both complete and reduced first-crop daughter groups (261 or 65 daughters per sire, respectively). For complete daughter groups, predicted transmitting abilities at around 30 d in milk showed the best predictive ability for incidence of clinical mastitis, closely followed by average predicted transmitting abilities over the entire lactation. Both of these criteria were derived from the random regression model. These selection criteria improved accuracy of selection by approximately 2% relative to a cross-sectional model. However, for reduced daughter groups, the cross-sectional model yielded increased predictive ability compared with the selection criteria based on the random regression model. This result may be explained by the cross-sectional model being more robust, i.e., less sensitive to precision of (co)variance components estimates and effects of data structure.  相似文献   

18.
Application of random regression models (RRM) in a 2-step genomic prediction might be a feasible way to select young animals based on the complete pattern of the lactation curve. In this context, the prediction reliability and bias of genomic estimated breeding value (GEBV) for milk, fat, and protein yields and somatic cell score over days in milk (DIM) using a 2-step genomic approach were investigated. In addition, the effect of including cows in the training and validation populations was investigated. Estimated breeding values for each DIM (from 5 to 305 d) from the first 3 lactations of Holstein animals were deregressed and used as pseudophenotypes in the second step. Individual additive genomic random regression coefficients for each trait were predicted using RRM and genomic best linear unbiased prediction and further used to derive GEBV for each DIM. Theoretical reliabilities of GEBV obtained by the RRM were slightly higher than theoretical reliabilities obtained by the accumulated yield up to 305 d (P305). However, validation reliabilities estimated for GEBV using P305 were higher than for GEBV using RRM. For all traits, higher theoretical and validation reliabilities were estimated when incorporating genomic information. Less biased GEBV estimates were found when using RRM compared with P305, and different validation reliability and bias patterns for GEBV over time were observed across traits and lactations. Including cows in the training population increased the theoretical reliabilities and bias of GEBV; nonetheless, the inclusion of cows in the validation population does not seem to affect the regression coefficients and the theoretical reliabilities. In summary, the use of RRM in 2-step genomic prediction produced fairly accurate GEBV over the entire lactation curve for all analyzed traits. Thus, selecting young animals based on the pattern of lactation curves seems to be a feasible alternative in genomic selection of Holstein cattle for milk production traits.  相似文献   

19.
The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log2-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk loss in the average lactation affected with SCM was 155 kg of milk (2%) in primiparous cows and 445 kg of milk (5%) in multiparous cows. It was concluded that multiparous cows in late lactation can be expected to be responsible for the majority of the herd-level production loss caused by SCM, and that preventive measures need to focus on reducing the incidence of SCM in such cows.  相似文献   

20.
《Journal of dairy science》2023,106(7):4799-4812
After calving, high-yielding dairy cows mobilize body reserves for energy, sometimes to the detriment of health and fertility. This study aimed to estimate the genetic correlation between body weight loss until nadir and daily milk production (MY24) in first- (L1) and second-lactation (L2) Holstein cows. The data set included 859,020 MY24 records and 570,651 daily raw body weight (BWr) phenotypes from 3,989 L1 cows, and 665,361 MY24 records and 449,449 BWr phenotypes from 3,060 L2 cows, recorded on 36 French commercial farms equipped with milking robots that included an automatic weighing platform. To avoid any bias due to change in digestive content, BWr was adjusted for variations in feed intake, estimated from milk production and BWr. Adjusted body weight was denoted BW. The genetic parameters of BW and MY24 in L1 and L2 cows were estimated using a 4-trait random regression model. In this model, the random effects were fitted by second-order Legendre polynomials on a weekly basis from wk 1 to 44. Nadir of BW was found to be earlier than reported in the literature, at 29 d in milk, and BW loss from calving to nadir was also lower than generally assumed, close to 29 kg. To estimate genetic correlations between body weight loss and production, we defined BWL5 as the loss of weight between wk 1 and 5 after calving. Genetic correlations between BWL5 and MY24 ranged from −0.26 to 0.05 in L1 and from −0.11 to 0.10 in L2, according to days in milk. These moderate to low values suggest that it may be possible to select for milk production without increasing early body mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号