首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
The interactions between the flavan‐3‐ol (?)‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐casein in phosphate‐buffered saline (PBS) of pH 6.5 subjected to thermal processing at various temperatures (25–100 °C) were investigated using fluorescence quenching. The results indicated that different temperatures had different effects on the structural changes and EGCG‐binding ability of β‐casein. At temperatures below 60 °C, the β‐casein–EGCG interaction changed little (> 0.05) with increasing temperature. At temperatures above 80 °C, native assemblies of β‐casein in solution dissociated into individual β‐casein molecules and unfolded, as demonstrated by a red shift of the maximum fluorescence emission wavelength (λmax) of up to 8.8 nm. The highest quenching constant (Kq) and the number of binding sites (n) were 0.92 (±0.01) × 1013 m ?1 s?1 and 0.73 (±0.02) (100 °C), respectively. These results provide insight into the potential of interactions between β‐casein–EGCG that may modulate bioactivity or bioavailability to be altered during thermal process.  相似文献   

2.
Although the bioavailability of large peptides with biological activity is of great interest, the intestinal transport has been described for peptides up to only nine residues. β‐casein (β‐CN, 193–209) is a long and hydrophobic peptide composed of 17 amino acid residues (molecular mass 1881 Da) with immunomodulatory activity. The present work examined the transport of the β‐CN (193–209) peptide across Caco‐2 cell monolayer. In addition, we evaluated the possible routes of the β‐CN (193–209) peptide transport, using selective inhibitors of the different routes for peptide transfer through the intestinal barrier. The results showed that the β‐CN (193–209) peptide resisted the action of brush‐border membrane peptidases, and that it was transported through the Caco‐2 cell monolayer. The main route involved in transepithelial transport of the β‐CN (193–209) peptide was transcytosis via internalized vesicles, although the paracellular transport via tight‐junctions could not be excluded. Our results demonstrated the transport of an intact long‐chain bioactive peptide in an in vitro model of intestinal epithelium, as an important step to prove the evidence for bioavailability of this peptide.  相似文献   

3.
BACKGROUND: Rice dreg is an underutilized source of cereal protein with good potential for application in the food industry. Glutelin represents about 850 g kg?1 of total storage protein in rice dreg. The objective of this study was to characterize the physicochemical properties and emulsion stabilization of the Maillard type conjugate formed with rice dreg glutelin (RDG) and κ‐carrageenan (1:2 weight ratio) dry‐heated at 60 °C and 79% relative humidity for 24 h. RESULTS: Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and Fourier transform‐infrared analysis provided evidence on the formation of the Maillard type conjugation. Amino acid analysis suggested that the major locus during the Maillard reaction were lysine and arginine. Circular dichroism spectra showed decreasing amounts of α‐helix and β‐strand in the products with increment in the amount of turns and random coil. Conjugation with κ‐carrageenan could significantly improve solubility of RDG (P < 0.05). Measurements of mean droplet size and creaming stability in oil‐in‐water emulsions showed that the conjugate was more effective at stabilizing emulsions at low pH or in the presence of high ionic strength. CONCLUSION: The Maillard reaction can be successfully used as a coupling method for RDG and κ‐carrageenan to form the conjugate with improved solubility and emulsion stabilization. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
Proteolytic degradation and distribution of caseins and whey proteins between the soluble and colloidal phases were studied in six batches of commercial UHT milk (three skim and three whole milks) during storage at 25 ± 2 °C. For that purpose, at 30 day intervals, milk samples were ultracentrifuged and the pellets and supernatants analysed by capillary electrophoresis and SDS‐PAGE. Samples were also visually examined for signs of gelation. Extensive proteolytic degradation of the micellar fractions and severe changes in the electrophoretic pattern of the proteins present in the serum fractions were observed in all the batches. A higher proportion of denatured whey proteins not attached to the micelle surface was found in the skim milk samples as compared with the whole milk samples that could provide less resistance against gelation. In addition to β‐Lg, para‐κ‐casein was also found in the serum fraction. A high proteolytic activity against κ‐casein could be responsible for the hydrolysis of serum‐liberated κ‐casein or could have enhanced the liberation of β‐Lg–para‐κ‐casein complexes through proteolysis of micellar κ‐casein. © 1999 Society of Chemical Industry  相似文献   

5.
The variation of β‐amylase activity and protein fractions in barley grains was evaluated using 148 barley genotypes grown in the field and two cultivars under in vitro culture with two temperature treatments during grain development. The results showed that there was significant genotypic variation in β‐amylase activity and protein fraction content. Regression analysis indicated that β‐amylase activity was positively correlated with total protein and the level of each of the protein fractions, with the correlation coefficient between β‐amylase activity and hordein content being the highest. Furthermore, higher post‐anthesis temperatures (32/26°C, day/night) significantly enhanced β‐amylase activity and protein fraction content, presumably as a result of reduced starch content. Albumin and glutelin were the least and most affected, respectively, in comparison with the plants under lower temperature (22/16°C). Temperature post‐anthesis also influenced the morphology of the starch A granule and the number of B granules, suggesting the altered starch structure may also be a reason for deteriorated malting quality under high temperatures.  相似文献   

6.
Small amplitude oscillatory rheology and creep behavior of β‐glucan concentrate (BGC) dough were studied as function of particle size (74, 105, 149, 297, and 595 μm), BGC particle‐to‐water ratio (1:4, 1:5, and 1:6), and temperature (25, 40, 55, 70, and 85 °C). The color intensity and protein content increased with decreasing particle size by creating more surface areas. The water holding capacity (WHC) and sediment volume fraction increased with increasing particle size from 74 to 595 μm, which directly influences the mechanical rigidity and viscoelasticity of the dough. The dough exhibited predominating solid‐like behavior (elastic modulus, G′ > viscous modulus, G″). A discrete retardation spectrum is employed to the creep data to obtain retardation time and compliance parameters, which varied significantly with particle size and the process temperature. Creep tests exhibited more pronounced effect on dough behavior compared to oscillatory measurement. The protein denaturation temperature was insignificantly increased with particle fractions from 107 to 110 °C. All those information could be helpful to identify the particle size range and WHC of BGC that could be useful to produce a β‐d ‐glucan enriched designed food.  相似文献   

7.
Effects of α‐ and β‐chitosan (CH), soybean oil (SO) and their emulsions (CH:SO = 2:3) as coating materials on selected internal quality and sensory properties of eggs were evaluated during 5 weeks storage at 25 °C. After 3 weeks of storage, α‐ and β‐CH‐coated eggs changed to B grade, while SO‐ and emulsion‐coated eggs preserved grade A quality. Weight loss of eggs coated with SO and CH:SO emulsions was <2.0% vs. 5.3–5.8% for noncoated and CH‐coated eggs after 5 weeks of storage. β‐CH (0.9%) maintained lower weight loss of eggs than α‐CH (1.2%) only at 1‐week storage. Albumen pH of eggs coated with SO and CH:SO emulsions decreased progressively throughout storage. Eggs coated with β‐CH:SO emulsion and SO were significantly glossier than noncoated eggs. Consumers indicated positive purchase intent (69.17–76.67%) for all coated eggs. Overall, α‐CH:SO and β‐CH:SO emulsions extended egg shelf life by at least 3 weeks during room temperature storage.  相似文献   

8.
9.
The binding interaction between‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐lactoglobulin (βLG) was thoroughly studied by fluorescence, circular dichroism (CD) and protein–ligand docking. Fluorescence data revealed that the fluorescence quenching of βLG by EGCG was the result of the formation of a complex of βLG–EGCG. The binding constants and thermodynamic parameters at two different temperatures and the binding force were determined. The binding interaction between EGCG and βLG was mainly hydrophobic and the complex was stabilised by hydrogen bonding. The results suggested that βLG in complex with EGCG changes its native conformation. Furthermore, preheat treatment (90 °C, 120 °C) and emulsifier (sucrose fatty acid ester) all boosted the binding constants (Ka) and the binding site values (n) of the βLG‐EGCG complex. This study provided important insight into the mechanism of binding interactions of green tea flavonoids with milk protein.  相似文献   

10.
The finding of new isolates of non‐Saccharomyces yeasts, showing beneficial enzymes (such as β‐glucosidase and β‐xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non‐Saccharomyces yeasts. Four isolates were selected because of their both high β‐glucosidase and β‐xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB‐medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β‐glucosidase and β‐xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β‐glucosidase and β‐xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3‐folds) when wines were treated with non‐Saccharomyces isolates. In detail, terpineol, 4‐vinyl‐phenol and 2‐methoxy‐4‐vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2‐phenyl ethanol than those inoculated with other yeasts.  相似文献   

11.
Heat‐induced (90 °C/30 min) gelling of soy protein isolate (SPI) and κ‐carrageenan (κ‐CR) systems at pH values of 6.7 and 5.7 was evaluated. κ‐CR addition, increase in protein concentration and reduction in pH led to decreases in the initial gel structure forming temperature. Self‐supporting gels were not formed at concentrations of 8% (w/w) SPI or at concentrations below 0.3% (w/w) κ‐CR, but an increase in the concentration of SPI and κ‐CR led to an increase in the stress at rupture without influencing the deformability. Gel properties were a consequence of a simultaneous process of gelling and phase separation during heating. The non‐linear parameter of the Blatz, Sharda and Tschoegl (BST) rheological model allowed for the evaluation of the structural characteristics that in general corresponded to strain hardening behaviour. Strain weakening behaviour was observed at high biopolymer concentrations and at pH 6.7, which was associated with accentuated phase separation and a more discontinuous gel network.  相似文献   

12.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

13.
The objective of this study was to identify allele and genotype frequencies of the κ‐CN and β‐LG genes in Anatolian water buffalo. A total of 126 water buffalos from Turkey were genotyped using the PCR‐RFLP method. For gene κ‐CN, only B allele and BB genotype were observed. And for gene β‐LG, two types of alleles (A and B) and three types of genotypes were observed. The genotype frequencies of AA, AB and BB of β‐LG in Anatolian water buffalo were 0.254, 0.698 and 0.048, respectively. Surprisingly, the frequency of allele A was higher than that of allele B in contrast to world buffalo breeds.  相似文献   

14.
The effects of selected pretreatment methods, i.e. soaking in citric acid, blanching in water and blanching in citric acid, as well as hot‐air drying (at 70, 80 and 90 °C), on the retention and relative in vitro bioaccessibility of β‐carotene in dried carrots were investigated. The results indicated that the selected pretreatments and drying could enhance the relative bioaccessibility of β‐carotene in dried carrots. The relative bioaccessibility of β‐carotene in dried carrots increased to 47–73%, while the values in the fresh (13%) and dried untreated (31–47%) carrots were lower. Although significant losses of β‐carotene occurred during both the pretreatment and drying processes, bioaccessible β‐carotene contents of dried pretreated carrots were in a similar order to those of the fresh carrots, indicating the ability and hence the benefit of appropriate pretreatment and drying processes in maintaining the nutritive quality of a food product.  相似文献   

15.
Partially hydrogenated oils are known to cause metabolic stress and dyslipidemia. This paper explores a new dimension about the interaction between dietary trans‐fats and the defense heat‐shock protein (HSP) system, inflammation, and the gut microbiota of mice consuming a hyperlipidic diet containing partially hydrogenated vegetable oil free of animal fat. Five diet groups were installed: control diet, 2 hyperlipidic‐partially hydrogenated‐oil diets, each containing either casein or whey‐protein hydrolysate (WPH) as protein source, and 2 consuming hyperlipidic‐unhydrogenated‐oil diets containing either WPH or casein as a protein source. The partially hydrogenated oil inhibited c‐Jun NH2‐terminal kinase phosphorylation in the casein diets, but without altering κ‐B kinase. Neither the lipid nor the protein had an influence on the proinflammatory toll‐like receptor 4 (TLR4) pathway, but the combination of the high‐lipid content and WPH impaired glucose tolerance without altering insulin or glucose transporter‐4 translocation. It was remarkable to observe that, contrary to the case of a common high‐fat diet, the lard‐free hyperlipidic diets were hardly able to invert the Bacteroidetes:Firmicutes phylum ratio. Our results suggest that, in the absence of lard, the intake of trans‐fatty acids is less harmful than expected because it does not trigger TLR4‐inflammation or pose great threat to the normal gut microbiota. WPH had the effect of promoting the expression of HSP90, HSP60, and HSP25, but did not prevent dysbiosis, when the diet contained the unhydrogenated oil. The partially hydrogenated oil also seemed to antagonize the ability of WPH to induce the expression of protective HSPs.  相似文献   

16.
This work focused on the effect of glycosylation on the gelation ability of β‐conglycinin induced by microbial transglutaminase (MTGase). Rheological results indicated that the gels of β‐conglycinin‐dextran conjugate products exhibited higher G′ value (172.2 ± 8.6 Pa) compared with those of dry‐heated β‐conglycinin (75.2 ± 5.1 Pa), β‐conglycinin (53.3 ± 4.0 Pa) and β‐conglycinin‐dextran mixture (38.6 ± 2.6 Pa) after 4 h incubation with MTGase. The gels prepared from β‐conglycinin‐dextran conjugate products had higher hardness, fracturability, springiness and cohesiveness values determined by textural profile analysis. The turbidity of β‐conglycinin‐dextran conjugate products solution incubated with MTGase increased faster than those of the other three protein samples. The conjugated dextran in β‐conglycinin‐dextran conjugate products could inhibit extensive protein–protein interactions which might result in the formation of more ordered and stronger gel network structures during MTGase cross‐linking process. A compact and homogeneous gel networks in β‐conglycinin‐dextran conjugate products gels were also observed by scanning electron microscopy.  相似文献   

17.
The effects of drying by microwave and convective heating at 60 and 70 °C on colour change, degradation of β‐carotene and the 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH) scavenging activity of apricots were evaluated. Microwave heating reduced significantly the drying time (up to 25%), if compared with convective one, also owing to the higher temperature reached during the last phase of the process, as monitored by infrared thermography. Colour changes of apricot surface, described with lightness and hue angle, in both drying methods followed a first‐order reaction (0.927 ≤ R2 ≤ 0.996). The apricots dried by microwave were less affected by the darkening phenomena. The evolution of β‐carotene in fresh apricots (61.2 ± 5.6 mg kg?1 d.w.) during the drying highlighted a wider decrease (about 50%) when microwave heating was employed for both the temperatures used. Radical scavenging activity increased (P < 0.05) in all dried samples except for hot‐air dried apricots at 60 °C.  相似文献   

18.
The emulsifying properties of plant legume protein isolates (soy, pea, and lupin) were compared to a milk whey protein, β‐lactoglobulin (β‐lg), and a nonionic surfactant (Tween 20). The protein fractional composition was characterized using sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. The following emulsion properties were measured: particle diameter, shear surface ζ‐potential, interfacial tension (IT), and creaming velocity. The effect of protein preheat treatment (90 °C for 10 min) on the emulsifying behavior and the release of selected volatile organic compounds (VOCs) from emulsions under oral conditions was also investigated in real time using proton transfer reaction‐mass spectrometry. The legume proteins showed comparable results to β‐lg and Tween 20, forming stable, negatively charged emulsions with particle diameter d3,2 < 0.4 μm, and maintained stability over 50 d. The relatively lower stability of lupin emulsions was significantly correlated with the low protein surface hydrophobicity and IT of the emulsion. After heating the proteins, the droplet size of pea and lupin emulsions decreased. The VOC release profile was similar between the protein‐stabilized emulsions, and greater retention was observed for Tween 20‐stabilized emulsions. This study demonstrates the potential application of legume proteins as alternative emulsifiers to milk proteins in emulsion products.  相似文献   

19.
Milk samples from 203 Holstein cows were phenotyped for genetic variants αs1‐casein, β‐casein, κ‐casein and β‐lactoglobulin using starch‐gel electrophoresis. All of the four milk protein loci exhibited polymorphism with allele frequencies of 0.862 ± 0.017 for αs1‐casein B, 0.966 ± 0.0009 for β‐casein A, 0.712 ± 0.0224 for κ‐casein A and 0.567 ± 0.0245 for β‐lactoglobulin B. The mean heterozygosity estimated over all the four milk protein loci was 0.3015. Genetic equilibrium was observed among all of the loci investigated, except κ‐casein. Chi‐squared tests revealed that there was no significant linkage among studied milk protein phenotypes.  相似文献   

20.
This paper reports on the influence of molecular weight and concentration of barley β‐glucans on the rheological properties of wort and beer. Environmental conditions such as pH, maltose level in wort, ethanol content of beer, shearing and shearing temperature were also examined for their effects on wort and beer viscosities. In the range of 50–1000 mg/L, β‐glucans increased solution viscosity linearly with both molecular weights (MW) of 31, 137, 250, 327, and 443 kDa and concentration. The influence of MW on the intrinsic viscosity of β‐glucans followed the Mark‐Houwink relationship. Shearing wort and beer at approximately 13,000 s?1for 35 s was found to increase the wort viscosity but reduce beer viscosity. Shearing wort at 20°C influenced β‐glucan viscosity more than shearing at 48°C and 76°C whereas the shearing temperature (0, 5 and 10°C) did not effect the viscosity of beer. At lower pHs, shearing was found to reduce the viscosity caused by β‐glucans in wort but had no effect in beer. Higher concentrations of maltose in wort and ethanol in beer also increased the viscosity of β‐glucan polymers. It was found that β‐glucans had higher intrinsic viscosities in beer than in wort (5°C), and lower critical overlap concentrations (C*) in beer than in wort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号