共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the details of experimental and numerical analysis performed on three 0.8?m-high reinforced earth model walls with strip footing surcharge near the wall facing. The study investigates how wire mesh strength and geometry affect the failure mechanism. All three walls were nominally identical, except for reinforcement strength and geometry. The displacement field of the entire cross section was captured by high-resolution digital camera through transparent sidewall. The resulting images were analyzed using digital image correlation software. The results indicate that both reinforcement strength and aperture size influence the type of failure mechanism. Numerical modelling was also applied to assess the influence of sidewall friction (3D model) and reinforcement stiffness and strength (2D model) on the failure mechanism of the walls. The parameters for the numerical models were derived from independent tests and results, which were compared with the experimental observations. A good level of agreement with measurements was confirmed, even for the 2D model that excluded sidewall friction. 相似文献
2.
Jianfeng Chen Xiaopeng Guo Rui Sun Sathiyamoorthy Rajesh Song Jiang Jianfeng Xue 《Geotextiles and Geomembranes》2021,49(2):399-412
This paper presents the results of laboratory scale plate load tests on transparent soils reinforced with biaxial polypropylene geogrids. The influence of reinforcement length and number of reinforcement layers on the load-settlement response of the reinforced soil foundation was assessed by varying the reinforcement length and the number of geogrid layers, each spaced at 25% of footing width. The deformations of the reinforcement layers and soil under strip loading were examined with the aid of laser transmitters (to illuminate the geogrid reinforcement) and digital camera. A two-dimensional finite difference program was used to study the fracture of geogrid under strip loading considering the geometry of the model tests. The bearing capacity and stiffness of the reinforced soil foundation has increased with the increase in the reinforcement length and number of reinforcement layers, but the increase is more prominent by increasing number of reinforcement layers. The results from the physical and numerical modelling on reinforced soil foundation reveal that fracture of geogrid could initiate in the bottom layer of reinforcement and progress to subsequent upper layers. The displacement and stress contours along with the mobilized tensile force distribution obtained from the numerical simulations have complimented the observations made from the experiments. 相似文献
3.
Katarzyna A. Zamara Neil Dixon Gary Fowmes D. Russell V. Jones Bo Zhang 《Geotextiles and Geomembranes》2014
Low permeability engineered landfill barriers often consist of a combination of geosynthetics and mineral layers. Even though numerical modelling software is applied during the landfill design process, a lack of data about mechanical performance of landfill barriers is available to validate and calibrate those models. Instrumentation has been installed on a landfill site to monitor multilayer landfill lining system physical performance. The lining system comprises of a compacted clay layer overlaid by high density polyethylene geomembrane, geotextile and sand. Data recorded on the site includes: geosynthetic displacements (extensometers), strains (fibre optics, Demec strain gauges, extensometers) and stresses imposed on the liner (pressure cells). In addition, temperature readings were collected by a logger installed at the surface of the geomembrane, at the clay surface using pressure cell thermistors and air temperature using a thermometer. This paper presents readings collected throughout a period of three years and compares this measured performance with the corresponding numerical modelling of the lining system for stages during construction. Numerical modelling predictions of lining system behaviour during construction are comparable with the measurements when the geosynthetics are covered soon after placement, however, where the geosynthetics are left exposed to the sun for an extended period of time, in situ behaviour of the geosynthetics cannot be replicated by the numerical analysis. This study highlights the significant influence of the effect of temperature on geosynthetics displacements. A simple thermal analysis of the exposed geosynthetics is used to support the explanation for observed behaviour. 相似文献
4.
Interface shear strength between soil and geosynthetics mainly depends on the mechanical and physical properties of soil, geosynthetics and the normal stress acting at the interface. This paper presents results of an extensive experimental investigation carried out on sand-geosynthetic interface using modified large direct shear box. The study focusses on the shearing mechanism at the sand-geosynthetic interface and the effect of different parameters on the shearing mechanism. Smooth HDPE geomembrane, nonwoven needle punched geotextile and two types of sand having different mean particle size, have been used in the present study. Microstructural investigation of deformed specimen through Field Emission Scanning Electron Microscope (FESEM) reveals the shearing mechanism which includes interlocking and fiber stretching for sand-geotextile while sliding, indentation and plowing for sand-geomembrane interface. The shearing mechanism for sand-geomembrane interface highly depends on the normal stress and degree of saturation of sand. The critical normal stress that demarcates the sliding and plowing mechanism for sand-geomembrane interface is different for dry and wet sand. The amount of scouring (or plowing) of the geomembrane surface reduces with increase in the mean particle size of sand. FESEM images revealed that the sand particles get adhered to the geotextile fibers for tests involving wet sands. The present microstructural study aided in understanding the shearing mechanism at sand-geosynthetic interface to a large extent. 相似文献
5.
A computational model of flashover is presented that closely follows the experimental setup at CNRS-ENSMA-Poitiers. A propane burner with thermal power of 55 kW is used as a primary source of fire and square beech wood samples (30 mm×30 mm×5 mm) as fire spread targets. The computational model describes the wood pyrolysis with a progress variable. Using the conservation of heat fluxes at the solid–gas interface, the thermal diffusion in the wood samples is coupled with the convective and the radiative heat transfer in the ambient gas phase. The incoming heat flux at the upper surface of the wood samples reaches values between 20 and 30 kW/m2. With the ignition and subsequent combustion of the pyrolysis volatiles, the heat flux increases by approx. 12 kW/m2. The results show that the ignition of the wood samples is triggered at an approx. surface temperature of 650 K. Due to large local variations in incident heat flux, significant differences in the ignition times of the wood samples are observed. The comparison of the calculated and the experimentally measured temperature shows a good agreement for the first wood sample and the model predicts the ignition time very well. But for the second and the third wood samples the model overpredicts the temperature, which leads to a premature ignition of these wood samples. 相似文献
6.
R. Corthsy M.H. Leite 《International Journal of Rock Mechanics and Mining Sciences》2008,45(3):329-350
There has been a debate in the rock mechanics community regarding the mechanisms causing what is known as core discing. This phenomenon occurs when diamond drill cores are retrieved from rock masses in which high in situ stresses relative to rock strength are present. The interest in that phenomenon is to use it to estimate the in situ stresses from the shape and frequency of the failures along the core axis. In the present paper we argue that discing is only an indicator of high stresses, and that estimating in situ stresses from fracture observations is much too inaccurate.As most of the literature found on the subject has tackled the problem using elastic numerical models, it is shown that the stress distribution in the core being formed obtained from such models does not exist once failure has been reached. Numerical analyses using Flac2D with an elasto-plastic cohesion softening friction hardening model show that for a given stress state, discing or core damage may involve tensile failure, a combination of shear and tensile failure, or only shear failure, depending on the stress state and ratio of tensile to shear strength of the rock. The numerical model used is validated by replicating core discing observed under controlled laboratory conditions. Parametric analyses involving changes in mesh density, deformability parameters, dilatancy, drill bit pressure, drilling fluid pressure and applied stress states are also performed. Finally, it is shown that drilling-induced core discing or damage store important residual stresses in the core which may explain why recovered core samples tend to show a deterioration of their mechanical properties with time. 相似文献
7.
Yang Zhao Zheng Lu Hailin Yao Haixiang Hu Xiaoyong Li Yousheng Tang 《Geotextiles and Geomembranes》2021,49(4):952-962
The variability of the virtual time of stepped isothermal method (SIM) was observed during the creep master curves construction of a new high-performance geosynthetics material, which led to the significant errors in predicting the long-term creep. After analyzing the process of construction, the difference in selecting the beginning and end segments is the reason causing the errors. Therefore, a set of computer-based routine was programmed to eliminate the errors. Based on the amount of data of SIM and conventional creep tests, the virtual time of each corresponding step, the curves of scaled creep data, and the comparison between these two creep data were obtained in the present study by the routine. They were used to study the influence of different beginning segments and end segments on the master creep curve. Overall, The 5% of elevated temperature step and 50% of the previous step is suggested to regard as the beginning segment and end segment respectively to obtain the more well-founded virtual time and more accurate creep curve. This study not only provides a reference for research focusing on accelerated creep tests but proposed a fast and accurate methodology to construct the creep master of SIM tests. 相似文献
8.
《Geotextiles and Geomembranes》2020,48(4):546-560
This paper presents the performance monitoring results and long-term numerical analyses of a 2.8-m-high test embankment with vertical drains on soft highly compressible clays during a four years and two months observation period (1525 days). The peculiar study site is characterized by thick layers of lacustrine soft clay with water contents up to 300%, void ratios between 7 and 9 and ratios Cα/Cc range from 0.06 to 0.03. The loading applied by the test embankment was 43.4 kPa. The vertical drains installed were of two types: sand and prefabricated. The settlements that only take into account the effect of the preloading embankment at the end of the observation period were 2.62 m and 2.71 m, in the zones with sand and prefabricated vertical drains, respectively. The settlement measured by regional subsidence was 0.47 m. The ultimate primary settlement was approximately 2.0 m and was estimated by two observational methods based on field settlement records. The settlement developed by secondary consolidation in the embankment ranged from 0.62 m to 0.71 m at the end of the observation period. The test embankment behavior was simulated by 2D and 3D numerical analyses. The 2D analyses used a theory to convert the axisymmetric drainage into plane drainage. The long-term numerical results and the field measurements were compared and discussed. 相似文献
9.
A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering 总被引:12,自引:0,他引:12
The purpose of this review paper is to present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics. Such modelling is essential for studying the fundamental processes occurring in rocks and for rock engineering design. The review begins by explaining the special nature of rock masses and the consequential difficulties when attempting to model their inherent characteristics of discontinuousness, anisotropy, inhomogeneity and inelasticity. The rock engineering design backdrop to the review is also presented. The different types of numerical models are outlined in Section 2, together with a discussion on how to obtain the necessary parameters for the models. There is also discussion on the value that is obtained from the modelling, especially the enhanced understanding of those mechanisms initiated by engineering perturbations. In Section 3, the largest section, states-of-the-art and advances associated with the main methods are presented in detail. In many cases, for the model to adequately represent the rock reality, it is necessary to incorporate couplings between the thermal, hydraulic and mechanical processes. The physical processes and the equations characterizing the coupled behaviour are included in Section 4, with an illustrative example and discussion on the likely future development of coupled models. Finally, in Section 5, the advances and outstanding issues in the subject are listed and in Section 6 there are specific recommendations concerning quality control, enhancing confidence in the models, and the potential future developments. 相似文献
10.
《Geotextiles and Geomembranes》2022,50(1):55-68
A series of large scale direct shear experiments is used to investigate the effect of the geomembrane (GMB) surface roughness, geotextile (GTX) properties, and GTX ageing, on the GMB-GTX interface shear behaviour. Interfaces involving smooth, coextruded textured, and structured surface GMBs underlying four different nonwoven needle-punched staple fibres (GTXs) with mass per unit areas between 200 and 2400 g/m2, and a geocomposite drain (GCD) are examined at normal stresses between 250 and 1000 kPa. The results showed that the interlocking between the GMB and GTX increased with increasing the GMB asperity height and/or decreasing the mass per unit area of the GTX. For the interfaces that involved GTXs preaged prior to the shear box experiments for up to 2 years at 85 °C, it was found that the 2400 g/m2 heat bonded two-layered GTX exhibited internal shear failure at low shear displacements. However, all the highly aged single layered GTXs showed an increase in the peak interface friction angles with the increase in their ageing. For these single layered GTX, the results suggest that assessing the interface friction angles using unaged GTXs for the stability analysis is conservative as long as the GTX remains intact in the field. 相似文献
11.
This paper presents a study on the mechanical behaviours of a special joint between a rigid suspension cable and a truss girder in a rigid suspension stiffened steel truss bridge. Both a model test and a numerical finite element analysis (FEA) have been conducted, and relevant information about the models used, loading procedure and test scheme is presented. The model test shows that the maximum stress in the joint is less than the material allowable stress and the maximal stress induced from the secondary moment accounts for about 30% of the total stress. A three-dimensional finite element model is used in the numerical analysis and the results are in very good agreement with those of the model test. This study shows that the design of the special joint is reasonable and the structure safe. It is also expected that the results presented in this paper would be useful as references for future research and design of rigid suspension stiffened steel truss bridges and joints. 相似文献
12.
Yong-Joo Lee Richard H. Bassett 《Tunnelling and Underground Space Technology incorporating Trenchless Technology Research》2007,22(3):325-342
In the congested urban areas, tunnelling close to existing structures or services often occurs due to the lack of surface space. Consequently, tunnelling-induced ground movements may cause a serious damage to the adjacent structures. This study focussed on two-dimensional laboratory model test for the pile–soil-tunnelling interaction using a close range photogrammetric technique and numerical analysis. Model testing equipments and procedures were introduced, particularly the use of aluminium rods regarded as the frictional granular material. The normalised pile tip movements were identified by both the model test and finite element analysis. The model test results found to be in good agreement with the finite element analysis. Based on the normalised pile tip settlements due to tunnelling adjacent to a line of loaded piles, influence zones were proposed in this study. The proposed influence zones are relatively wider and deeper than those proposed in previous studies. The authors believe that it will be useful to decide the reasonable location of tunnel construction in the planning stage. 相似文献
13.
《Soils and Foundations》2014,54(6):1104-1116
An alternative approach is developed in order to estimate the hydraulic conductivity of soft fine grained soils, based on numerical simulation of the full penetration and dissipation process for piezocones. Unlike previous methods of analysis, the process of penetration and dissipation has been explicitly simulated, thus eliminating several of the simplifications inherent in existing interpretation methods such as geometric approximations, predefined stress fields or neglecting material compressibility. The presented method is not established upon a particular set of data leading to limited applicability, but is rather developed using a more general approach and can be extended to other datasets if intended. Given the time to 50% consolidation and a number of influencing soil parameters, a single estimate of the soil horizontal permeability can be obtained via a single-run piezocone sounding using pore pressure measurements taken at the shoulder filter element (u2) located immediately behind the cone.The proposed interpretation method embodies many of the key parameters (namely the soil shear strength, soil rigidity, and soil confining stresses) likely to influence the soil behaviour and thus the parameter to be interpreted. Numerical analyses demonstrated that the rate of dissipation increases as the soil rigidity or the soil confining pressure increases, which is a consequence of higher excess pore pressure gradient at higher depths or at larger rigidities. The method, which involves a new excess pore pressure normalisation technique, is applicable to both monotonic and dilative dissipation data. The proposed interpretation method is compared to a series of experimental data including two recent field tests. Although the method was calibrated against only a select few cases, its applicability to a wide range of clayey soils was verified. 相似文献
14.
Balaka Ghosh Behzad Fatahi Hadi Khabbaz Huu Hung Nguyen Richard Kelly 《Geotextiles and Geomembranes》2021,49(3):804-824
Generally numerical modelling can provide an accurate and cost-effective approach to understand the behaviour of geosynthetic-reinforced column-supported embankment. When the problem geometry cannot be simplified to the two-dimensional plane-strain or axisymmetric, a full three-dimensional solution is required to obtain sensible results. This study presents a modelling of the geosynthetic-reinforced composite ground supporting a road embankment. Response of soft soil is captured by adopting Modified Cam-Clay model. In addition, Hoek-Brown constitutive model is considered to simulate non-linear stress-dependent yield criterion for Concrete Injected Columns (CIC) that describes shear failure and tensile failure by a continuous function. To assess whether the proposed numerical model can capture real behaviour of composite ground, field monitoring data of deep soft clay deposit improved by CIC from Gerringong Upgrade is used to validate the model. The settlement and lateral displacements of ground, stress transferred to column, and pore water pressure results for the embankment during and after the construction, measured using the field instrumentations including settlement plates, inclinometers, earth pressure cells on CIC, and pore pressure transducers, are compared with numerical predictions. In addition, the numerical results provide insights to investigate load transfer mechanism in the composite ground, capturing response of soil – column - embankment system. 相似文献
15.
The Guangzhou International Convention & Exhibition Center (GICEC) with roof dimensions of 210 m wide and 457 m long is the largest exhibition center in Asia and the 2nd largest of this kind in the world. This paper presents results from a combined study of wind tunnel test, full-scale measurement, and numerical analysis of wind effects on the long-span beam string roof structure. In the wind tunnel test, wind-induced pressures including mean and fluctuating components were measured from the roof of a 1:300 scale GICEC model under suburban boundary layer wind flow configuration. The Proper Orthogonal Decomposition (POD) method and the quasi-steady approach as well as probability analysis were adopted to estimate the characteristics of the fluctuating wind pressures on the roof. On the other hand, full-scale measurements of wind actions and wind-induced structural responses of the roof were conducted during the passage of Typhoon Nuri. The field data such as wind speed, wind direction, and acceleration responses, etc., were continuously and simultaneously monitored from a wind and structural response monitoring system installed on the roof structure during the typhoon. Detailed analysis of the field data was performed to investigate the characteristics of the typhoon-generated wind and the wind-induced vibration of the long-span roof structure under typhoon condition. The dynamic characteristics of the roof were determined from the field measurements and comparisons with those calculated from the finite element model (FEM) of the structure were made. The damping ratios of the roof structure were estimated by means of the random decrement method and the amplitude-dependent damping characteristics were presented and discussed. Finally, the full-scale measurements were compared with the model test results to examine the accuracy of the wind tunnel test results and to identify possible modelling errors in the numerical study. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing long-span roof structures. 相似文献
16.
The dynamic shear strength of rocks is required for the earthquake-resistant design of nuclear power plants in Japan.This research aims to propose a mathematical model for estimating the dynamic strength and to validate the model.Two different types of specimens were prepared for the model validation,and the monotonic and cyclic loading tests were conducted to obtain the mathematical model parameters.Subsequently,multistep cyclic loading tests were performed,followed by simulations using the mathematical model.The test results demonstrated that the dynamic shear strength exceeded the static shear strength,which agreed with previous researches.Furthermore,the dynamic shear strength calculated using the mathematical model was generally consistent with that obtained from the experimental data. 相似文献
17.
《Geotextiles and Geomembranes》2022,50(6):1230-1243
There are several methods for estimating bed shear stress in the literature, but comprehensive comparisons among them are limited and under specific conditions. This study compared these methods first on a bare smooth bed, and then for a single geobag on a rough bed in the interest of determining the stability of geobags used in riverbank protection structures. The geobag was filled with cement or sand and tested under different open channel flow conditions. The turbulent kinetic energy method appeared to best represent the local bed shear stress on the geobag when using the newly calibrated proportionality constants. The Reynolds stress method via extrapolation was relatively unaffected by changes to the geobags shape and measurement locations, suggesting this method inadequately represents the local bed shear stress. The Patel method and the universal law of the wall method failed to represent local bed shear stress in the rough bed cases due to instrument limitations and the breakdown of the law of the wall. This study highlights the impact of different methods on the bed shear stress estimation. 相似文献
18.
19.
Integrated analyses at a number of underground operations have suggested that qualitative relations may exist between microseismic variable values estimated in real-time from mine seismic systems and the stress estimates provided by numerical models. In this study, multivariate statistical techniques were used to evaluate whether quantitative relations could be formed using data from the Creighton Mine in Sudbury, Ontario. It is believed that if sufficiently reliable relations could be developed, they might then be exploited to better characterize the state of the rock mass and provide insight beyond what could be obtained from either data set in isolation. This insight could then be used to eventually impact both short- and long-term mine design decisions.This paper represents the second part of a two part series and describes the evaluation of the 11 statistically significant relations that were formed in the first paper between variables within the stress and seismic databases. Specifically, the model adequacy and the stability of each relation was evaluated. In addition, the prediction capabilities of each relation were evaluated and the relations were interpreted relative to prior experience and physical theory.The results of this component of the study indicated that all but three of the developed relations met the statistical requirements for relations of this type and all were shown to be quite stable. In terms of prediction, it was demonstrated that this could best be achieved through the application of Discriminant Function Analysis. This technique was shown to be capable of suggesting which events were generated under relatively high-stress conditions, though the technique was less successful at correctly identifying events generated under lower stress conditions. Interpretation focussed on the relation between the stress conditions at the source and two particular variables from the seismic database and concluded that the observed variations in source strength were primarily controlled by spatial variations in confinement. The importance of a rigorous methodology was also discussed, as was potential ways in which the relations of the types formed in this study could impact mine design decisions. 相似文献
20.
《Structure and Infrastructure Engineering》2013,9(10):1383-1397
Assessing the structural performance of existing concrete bridges is nowadays a major task. Nonlinear finite element (FE) analysis can quantify their capacity, evaluate strengthening interventions and prevent premature dismantle. However, this technique, mainly performed with 2D/3D FE, is seldom used at true scale due to the great complexity and computational costs involved. In this paper, the loading test of a strengthened concrete bridge in Sweden (Örnsköldsvik) is simulated using a 1D model. The bridge failed in combination of shear–bending–torsion triggered by fibre-reinforced polymer bond failure. Consecutive levels of refinement of the 1D model are presented and available results from higher order models are compared. The study of the structural response involved comparing displacements, strains, cracking patterns and failure mechanisms. The demonstrated robustness and efficiency of the proposed model makes it adequate for blind assessments of existing bridges. 相似文献