首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grid-scale underground hydrogen storage (UHS) is essential for the decarbonization of energy supply systems on the path towards a zero-emissions future. This study presents the feasibility of UHS in an actual saline aquifer with a typical dome-shaped anticline structure to balance the potential seasonal mismatches between energy supply and demand in the UK domestic heating sector. As a main requirement for UHS in saline aquifers, we investigate the role of well configuration design in enhancing storage performance in the selected site via numerical simulation. The results demonstrate that the efficiency of cyclic hydrogen recovery can reach around 70% in the short term without the need for upfront cushion gas injection. Storage capacity and deliverability increase in successive storage cycles for all scenarios, with the co-production of water from the aquifer having a minimal impact on the efficiency of hydrogen recovery. Storage capacity and deliverability also increase when additional wells are added to the storage site; however, the distance between wells can strongly influence this effect. For optimum well spacing in a multi-well storage scenario within a dome-shaped anticline structure, it is essential to attain an efficient balance between well pressure interference effects at short well distances and the gas uprising phenomenon at large distances. Overall, the findings obtained and the approach described can provide effective technical guidelines pertaining to the design and optimization of hydrogen storage operations in deep saline aquifers.  相似文献   

2.
Hydrogen stored on a large scale in porous rocks helps alleviate the main drawbacks of intermittent renewable energy generation and will play a significant role as a fuel substitute to limit global warming. This study discusses the injection, storage and production of hydrogen in an open saline aquifer anticline using industry standard reservoir engineering software, and investigates the role of cushion gas, one of the main cost uncertainties of hydrogen storage in porous media.The results show that one well can inject and reproduce enough hydrogen in a saline aquifer anticline to cover 25% of the annual hydrogen energy required to decarbonise the domestic heating of East Anglia (UK). Cushion gas plays an important role and its injection in saline aquifers is dominated by brine displacement and accompanied by high pressures. The required ratio of cushion gas to working gas depends strongly on geological parameters including reservoir depth, the shape of the trap, and reservoir permeability, which are investigated in this study. Generally, deeper reservoirs with high permeability are favoured. The study shows that the volume of cushion gas directly determines the working gas injection and production performance. It is concluded that a thorough investigation into the cushion gas requirement, taking into account cushion gas costs as well as the cost-benefit of cushion gas in place, should be an integral part of a hydrogen storage development plan in saline aquifers.  相似文献   

3.
Hydrogen energy has tremendous potential as a clean fuel in this energy transition. To build up the full-scale hydrogen energy supply chain, large-scale hydrogen storage is of vital importance. Underground hydrogen storage in saline aquifers has been perceived as an important means to achieve large-scale hydrogen storage. Therefore, we investigated hydrogen transport in pore network in a sandstone porous media at strongly water-wet and weakly water-wet (hydrogen-wet). We performed direct numerical simulation through volume of fluid method to investigate the transport of hydrogen at pore-scale under different wetting conditions with input hydrogen-rock physics data from literature. Our results showed that during primary drainage process (hydrogen injection for storage purpose), increasing hydrogen wetting decreased snap-off effect, enabling a greater pore space for hydrogen storage. During primary imbibition process (hydrogen extraction), increasing hydrogen wetting promoted the size and stability of hydrogen clusters, which is unfavorable to hydrogen extraction process. Given the significant high interfacial tension between brine and hydrogen and low viscous force of hydrogen, snap-off effect dominates the flow in both hydrogen injection and extraction process regardless of wetting conditions. This physical process causes the recovery factor even below 20%. We therefore suggest that storing hydrogen in depleted gas reservoirs under irreducible water saturation would have much less risks in hydrogen trapping during extraction process.  相似文献   

4.
Numeric modeling and the PetraSim program with a TOUGH2 deposit simulator have been applied to the evaluation of the viability of seasonal (cyclic) hydrogen storage in a deep aquifer, in the porous rocks of a well-recognized geological structure Suliszewo. The modeling was performed for one injection-and-withdrawal well located on the summit of the structure, under an assumption that the values of the fracturing pressure and capillary entry pressure will not be exceeded.Upconing seems to be the main obstacle in underground hydrogen storage. It was noted that the amount of recovered hydrogen increases in successive withdrawal cycles. It is shown that the management of large amounts of water during hydrogen withdrawal will be a serious environmental issue, important also for the cost-effectiveness of the underground storage. The obtained modeling results indicate that underground hydrogen storage in a deep aquifer may be performed with reasonable parameters of gas recovery.  相似文献   

5.
能源危机和温室效应促进了可再生能源的利用,储能技术是解决太阳能、风能波动问题的重要手段。压缩空气储能(Compressed Air Energy Storage, CAES)技术是仅次于抽水蓄能的第二大蓄能技术。目前CAES多是通过洞穴实现,其主要缺点是对地质要求较高,合适的洞穴数量有限,为扩大其应用,可使用地下咸水含水层作为储层。本文介绍了CAES电站的工作原理、优缺点及各国的发展现状,并分析了利用地下咸水含水层进行压缩空气储能的可行性、优点及一些问题与技术方法,如储层内残余烃的影响、氧化与腐蚀作用、颗粒的影响及缓冲气的选择,表明含水层CAES将是拓宽CAES应用的重要途径。  相似文献   

6.
Increased penetration of renewable energy sources and decarbonisation of the UK's gas supply will require large-scale energy storage. Using hydrogen as an energy storage vector, we estimate that 150 TWh of seasonal storage is required to replace seasonal variations in natural gas production. Large-scale storage is best suited to porous rock reservoirs. We present a method to quantify the hydrogen storage capacity of gas fields and saline aquifers using data previously used to assess CO2 storage potential. We calculate a P50 value of 6900 TWh of working gas capacity in gas fields and 2200 TWh in saline aquifers on the UK continental shelf, assuming a cushion gas requirement of 50%. Sensitivity analysis reveals low temperature storage sites with sealing rocks that can withstand high pressures are ideal sites. Gas fields in the Southern North Sea could utilise existing infrastructure and large offshore wind developments to develop large-scale offshore hydrogen production.  相似文献   

7.
The replacement of coal-fired power plants with increasing proportions of renewable and nuclear energies in the province of Ontario highlights the need to balance seasonal energy demands. This can be achieved through power-to-gas technology, where excess energy is used to generate hydrogen gas through electrolysis, and the generation is coupled with underground hydrogen storage. This article presents a preliminary assessment regarding the potential for underground hydrogen storage in geological formations including salt and hard rock caverns, depleted oil and gas fields, and saline aquifers in Ontario, highlighting potential locations where future storage could be feasible. Southern Ontario presents many potential storage options, including Silurian bedded salts, depleted Ordovician natural gas reservoirs, saline aquifers in Cambrian sandstone and hard rock caverns in argillaceous limestones. Hard rock caverns in Precambrian crystalline rocks of the Canadian Shield are also discussed, in addition to the potential for the use of lined rock caverns. This work aims to provide a basis for further research regarding the appropriate location of underground hydrogen gas storage facilities in Ontario.  相似文献   

8.
The challenge associated with large-scale hydrogen storage is a pertinent one to achieve a hydrogen economy. The increasing global demand for clean and green energy is the driving force to propel such an economy. Furthermore, hydrogen is also considered an alternative energy source compared to fossil fuel as a clean energy alternative. Hydrogen geo-storage in a deep saline aquifer, depleted oil and gas reservoirs can resolve this challenge. We assess the potential of a saline aquifer in a sandstone formation to store hydrogen through first-of-its-kind x-ray micro-computed tomography miniature coreflood experiments. The investigation shows that ~65% of the sandstone's pore volume can be occupied by hydrogen when injected at a slow rate. Residual saturation of hydrogen upon brine injection can be ~41%.  相似文献   

9.
储氢技术作为氢气生产与使用之间的桥梁,至关重要。本文综述了目前常用的储氢技术,主要包括物理储氢、化学储氢与其它储氢。物理储氢主要包括高压气态储氢与低温液化储氢,具有低成本、易放氢、氢气浓度高等特点,但安全性较低。化学储氢包括有机液体储氢、液氨储氢、配位氢化物储氢、无机物储氢与甲醇储氢。其虽保证了安全性,但其放氢难,且易发生副反应,氢气浓度较低。其它储氢技术包括吸附储氢与水合物法储氢。吸附储氢技术的储氢效率受吸附剂的影响较大,且不同程度的存在放氢难、成本高、储氢密度不高等问题。水合物法储氢具有易脱氢、成本低、能耗低等特点,但其储氢密度较低。在此基础上,本文基于现状分析,简要展望了储氢技术今后的研究方向。  相似文献   

10.
Hydrogen is an integral component of the current energy transition roadmap to decarbonize the economy and create an environmentally-sustainable future. However, surface storage options (e.g., tanks) do not provide the required capacity or durability to deploy a regional or nationwide hydrogen economy. In this study, we have analyzed the techno-economic feasibility of the geologic storage of hydrogen in depleted gas reservoirs, salt caverns, and saline aquifers in the Intermountain-West (I-WEST) region. We have identified the most favorable candidate sites for hydrogen storage and estimated the volumetric storage capacity. Our results show that the geologic storage of hydrogen can provide at least 72% of total energy consumption of the I-WEST region in 2020. We also calculated the capital and levelized costs of each storage option. We found that a depleted gas reservoir is the most cost-effective candidate among the three geologic storage options. Interestingly, the cushion gas type plays a significant role in the storage cost when we consider hydrogen storage in saline aquifers. The levelized costs of hydrogen storage in depleted gas reservoirs, salt caverns, and saline aquifers with large-scale storage capacity are approximately $1.15, $2.50, and $3.27 per kg of H2, respectively. This work provides essential guidance for the geologic hydrogen storage in the I-WEST region.  相似文献   

11.
Hydrogen storage is essential in hydrogen value chains and subsurface storage may be the most suitable large-scale option. This paper reports numerical simulations of seasonal hydrogen storage in the Norne hydrocarbon field, offshore Norway. Three different storage schemes are examined by injecting pure hydrogen into the gas-, oil-, and water zones. Implementation of four annual withdrawal-injection cycles followed by one prolonged withdrawal period show that the thin gas zone is a preferred target with a final hydrogen recovery factor of 87%. The hydrogen distribution in the subsurface follow the geological structures and is restricted by fluid saturation and displacement efficiencies. Case studies show that the pre-injection of formation gas as a cushion gas efficiently increases the ultimate hydrogen recovery, but at the cost of hydrogen purity. The injection of 30% hydrogen-formation gas mixture results in a varying hydrogen fraction in the withdrawn gas. An alternative well placement down the dipping structure shows lower storage efficiency.  相似文献   

12.
Large-scale energy storage methods can be used to meet energy demand fluctuations and to integrate electricity generation from intermittent renewable wind and solar energy farms into power grids. Pumped hydropower energy storage method is significantly used for grid electricity storage requirements. Alternatives are underground storage of compressed air and hydrogen gas in suitable geological formations. Underground storage of natural gas is widely used to meet both base and peak load demands of gas grids. Salt caverns for natural gas storage can also be suitable for underground compressed hydrogen gas energy storage. In this paper, large quantities underground gas storage methods and design aspects of salt caverns are investigated. A pre-evaluation is made for a salt cavern gas storage field in Turkey. It is concluded that a system of solar-hydrogen and natural gas can be utilised to meet future large-scale energy storage requirements.  相似文献   

13.
Hydrogen is becoming an alternative for conventional energy sources due to absence of any Greenhouse Gases (GHG) emissions during its usage. Geological storage of hydrogen will be potential solution for dealing with large volume requirement to manage uninterrupted Hydrogen supply-chain. Geological Storages such as depleted reservoirs, aquifers and salt caverns offer great potential option for underground hydrogen storage (UHS). There are several depleted gas fields in India. One of such field is located in Tapti-Daman formation. A comprehensive study is conducted to assess the possibility of hydrogen storage in this Indian field which is first of its kind. The geological characteristic of this site is assessed for its viability for storage. Additionally, several aspects including storage capacity, sealability, chemical and micro-biological stability, reservoir simulation, and production viability are assessed using various analytical and numerical models.The qualitative analysis of the Tapti-gas field suggests that the integrity of the storage site will be intact due to existing anticlinal four-way closed structure. The chemical and micro-biological losses are minimal and will not lead to major loss of hydrogen over time. The reservoir modeling results show that optimum gas production-injection scheme needs to be engineered to maintain the required reservoir pressure level in the Tapti-gas field. Also, the deliverability of the various seasonal storage time show that 80 days production scheme will be suitable for efficient operation in this field. Finally, a synergistic scheme to enable green energy production, storage, and transportation is proposed via implementation of UHS in the offshore Tapti-gas field.  相似文献   

14.
氢能的利用是当今世界发展必然趋势,使用超临界氢存储技术可对氢能进行储存。介绍了超临界氢,并详细分析了超临界储氢、气态压缩储氢和低温液态储氢的优缺点。然后,对超临界储氢技术进行了详细论述,介绍了超临界吸附储氢和低温压力容器储存超临界氢两种技术的研究进展。最后,根据超临界氢存储技术的研究现状,提出了一些对超临界氢存储技术的发展及应用具有一定指导意义的建议。  相似文献   

15.
Romania is a country with relatively good opportunities to manage the transition from the dependence on fossil energy to an energy industry based on renewable energy sources (RES), supported by hydrogen as an energy carrier. In order to ensure Romania's energy security in the next decades, it will be necessary to consider a fresh approach incorporating a global long-term perspective based on the latest trends in energy systems. The present article focuses on an analysis of the potential use of salt caverns for hydrogen underground storage in Romania. Romanian industry has a long technical and geological tradition in salt exploitation and therefore is believed to have the potential to use the salt structures also in the future for gas and specifically hydrogen underground storage. This paper indicates that more analysis works needs to be undertaken in order to value this potential, based on which macroeconomic decisions then can be taken. The present work examines the structures of today's energy system in Romania and features an analysis of Romania's current potential of hydrogen underground storage as well as, reports on the potential use of this hydrogen in chemical industry, the transport sector and salt industry in Romania and highlighting issues implied by a possible introduction and use of hydrogen and fuel cell technologies.  相似文献   

16.
Hydrogen can act as an energy store to balance supply and demand in the renewable energy sector. Hydrogen storage in subsurface porous media could deliver high storage capacities but the volume of recoverable hydrogen is unknown. We imaged the displacement and capillary trapping of hydrogen by brine in a Clashach sandstone core at 2–7 MPa pore fluid pressure using X-ray computed microtomography. Hydrogen saturation obtained during drainage at capillary numbers of <10?7 was ~50% of the pore volume and independent of the pore fluid pressure. Hydrogen recovery during secondary imbibition at a capillary number of 2.4 × 10?6 systematically decreased with pressure, with 80%, 78% and 57% of the initial hydrogen recovered at 2, 5 and 7 MPa, respectively. Injection of brine at increasing capillary numbers up to 9.4 × 10?6 increased hydrogen recovery. Based on these results, we recommend more shallow, lower pressure sites for future hydrogen storage operations in porous media.  相似文献   

17.
Targeting the net-zero emission (NZE) by 2050, the hydrogen industry is drastically developing in recent years. However, the technologies of hydrogen upstream production, midstream transportation and storage, and downstream utilization are facing obstacles. In this paper, the development of hydrogen industry from the production, transportation and storage, and sustainable economic development perspectives were reviewed. The current challenges and future outlooks were summarized consequently. In the upstream, blue hydrogen is dominating the current hydrogen supply, and an implementation of carbon capture and sequestration (CCS) can raise its cost by 30%. To achieve an economic feasibility, green hydrogen needs to reduce its cost by 75% to approximately 2 $/kg at the large scale. The research progress in the midterm sector is still in a preliminary stage, where experimental and theoretical investigations need to be conducted in addressing the impact of embrittlement, contamination, and flammability so that they could provide a solid support for material selection and large-scale feasibility studies. In the downstream utilization, blue hydrogen will be used in producing value-added chemicals in the short-term. Over the long-term, green hydrogen will dominate the market owing to its high energy intensity and zero carbon intensity which provides a promising option for energy storage. Technologies in the hydrogen industry require a comprehensive understanding of their economic and environmental benefits over the whole life cycle in supporting operators and policymakers.  相似文献   

18.
Overreliance on fossil fuels for human energy needs, combined with the associated negative environmental consequences in terms of greenhouse gas emissions, has shifted our focus to renewable energy sources. Hydrogen has been identified by researchers as an energy source. Hydrogen is a non-carbon-based energy resource that has the potential to replace fossil fuels. This resource is seen as an alternative fuel since it may be produced using environmentally friendly methods.Hydrogen storage is a critical component of the hydrogen economy, particularly when hydrogen utilization on a large scale is required. This paper presents a review of worldwide underground operating and potential sites to provide a clear understanding of the current status of hydrogen storage in the world.The literature survey indicated that underground geological structures have been used to successfully store hydrogen. Some of the criteria used to select these sites for underground hydrogen storage include but are not limited to geological conditions, storage location, availability of brine, presence of insoluble impurities such as dolostone, limestone, or shale, and socio-economic characteristics.The key issues with the hydrogen storage in the subsurface geological structures include but are not limited to microbial, hydrogeological, hydrodynamics, geomechanics, and geochemical facilitated by injected hydrogen which significantly impact the success and operational efficiency of the projects.  相似文献   

19.
Clean hydrogen is a promising option for reducing carbon dioxide emissions, but it has not yet been used as an energy carrier at the scale required for meeting the net-zero target by 2050. Hydrogen molecules are smaller than nitrogen and methane molecules. Hydrogen, nitrogen, and methane have densities of 0.09 g/L, 1.25 g/L, and 0.71 g/L, respectively, at the standard temperature and pressure. Our knowledge of the geological formations is based on responses to the larger and heavier gases; it is unclear whether we can apply this knowledge to store hydrogen at the required scale.We investigate the single-phase flow of hydrogen in the subsurface and compare it with the single-phase flows of nitrogen and methane. The comparison with nitrogen is helpful because it is used under laboratory conditions. The comparison with methane is also beneficial because engineers understand its behavior under in-situ conditions. We use the Knudsen number (Kn) to determine the flow behaviors under laminar conditions within two domains. The first is a permeable medium representing a conventional gas reservoir, and the second is caprock. Our study shows that the existing knowledge of the first domain's permeability applies to hydrogen flow; however, it is unrealistic for the second domain. The single-phase permeability of the caprock obtained by nitrogen in the laboratory underestimates hydrogen permeability at low pressures (<10 MPa), and the deviation is a non-linear function of pressure. Our study also shows that hydrogen permeability is always larger than methane permeability in the caprock. The difference between the two, controlled by the reservoir pressure, reached 70% in the caprock. The presented results have applications if hydrogen storage in gas reservoirs becomes a reality.  相似文献   

20.
Salt formations of an appropriate thickness and structure, common over the globe, are potential sites for leaching underground caverns in them for storage of various substances, including hydrogen. Underground hydrogen storage, considered as underground energy storage, requires, in first order, an assessment of the potential for underground storage of this gas at various scales: region, country, specific place.The article presents the results of the assessment of the underground hydrogen storage potential for a sample bedded salt formation in SW Poland. Geological structural and thickness maps provided the basis for the development of hydrogen storage capacity maps and maps of energy value and heating value. A detailed assessment of the hydrogen storage capacity was presented for the selected area, for a single cavern and for the cavern field; a map of the energy value of stored hydrogen has also been presented. The hydrogen storage potential of the salt caverns was related to the demand for electricity and heat. The results show the huge potential for hydrogen storage in salt caverns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号