共查询到20条相似文献,搜索用时 10 毫秒
1.
高体细胞牛乳的性质及对加工的影响 总被引:9,自引:5,他引:9
阐述了高体细胞牛乳化学成分及微生物的变化,论述了产生这些变化的原因以及这些变化对乳制品加工、贮藏和销售所带来的一系列不良影响。主要表现在高体细胞牛乳中脂肪氧化酶含量升高,引起游离脂肪酸含量上升,牛乳易产生酸败味;牛孔中蛋白水解酶以及血纤维蛋白溶酶含量增加,引起乳蛋白水解,造成干酪产量下降,凝固型酸乳凝乳不坚固,UHT灭菌孔保质期缩短等质量缺陷;牛乳中盐类比例失调,使牛孔热稳定性降低,凝固型酸奶的凝乳疏松且易碎裂,乳清易析出;乳中过氧化氢酶和过氧化物酶含量升高,使产品品质不稳定,风味欠佳;牛乳中有害微生物含量增加,降低产品的食用安全性;治疗乳房炎所用的抗生素残留阻碍乳酸菌的发酵过程。这些变化都可能对乳制品的生产造成巨大损失。 相似文献
2.
There is a direct relationship between elevated somatic cell count (SCC) in an individual cow milk production and milk loss. This relationship has been used at the herd level to estimate an overall herd milk loss due to subclinical mastitis and to use recovery of this lost milk as a financial benefit to cover the cost of intervention strategies to improve milk quality. The objective of this study was to estimate the recoverable milk revenue on a per cow basis for herds moving from one herd average SCC level to a newer, lower level. Test-day records from 1,005,697 dairy cows in 3,741 herds between 2009 to 2019 were used. Milk yield loss for each cow in each herd on test day was estimated using a mixed effects regression equation, and then summed to estimated total herd milk loss. These herd average daily milk loss estimates were then related to the bulk tank SCC, and the distribution of underlying individual cow SCC were examined. The distributions in daily herd milk loss for various bulk tank SCC values were generated, and estimates of recoverable milk loss were generated to simulate a herd moving from their current bulk tank SCC to a new lower level. The results indicate that estimates of total herd milk yield loss vary with the distribution of cow-level SCC and parity within the herd, so it is imperative that milk loss be calculated on a per cow basis. Further, the recoverable milk loss estimates based on moving to a lower bulk tank SCC where milk loss is still occurring was relatively small compared with the traditional assumption that all milk loss would be recovered, and less than most herd owners and advisors would expect. 相似文献
3.
水牛乳体细胞数与理化性质关系的研究 总被引:1,自引:0,他引:1
测定麽拉水牛、尼里-拉菲水牛、高代三品种杂交水牛、一代杂交水牛乳中的体细胞数(Somatic Cell Count,SCC)及其理化性质,分析水牛乳SCC与理化性质之间的关系,探讨了水牛乳SCC水平对理化性质的影响。结果表明:在不同SCC水平下,水牛乳蛋白质、脂肪、总固形物、冰点、酒精阳性率变化不显著,水牛乳非脂固形物、乳糖、酸度、比重随着SCC的升高而显著降低,隐性乳房炎患病率随着SCC的升高而显著增加;在所测样品中,麽拉、尼里-拉菲水牛乳SCC>30×104mL-1,三品种杂交以及一代杂交水牛乳的SCC>50×104mL-1时,非脂固形物、乳糖、酸度、比重均值以及隐性乳房炎患病率变化更显著。 相似文献
4.
《Journal of dairy science》2022,105(8):6447-6459
Udder health in dairy herds is a very important issue given its implications for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most widely used means of assessing udder health status. However, differential somatic cell count (DSCC) has recently been proposed as a new and more effective means of evaluating intramammary infection dynamics. Differential SCC represents the combined percentage of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) in the total SCC, with macrophages (MAC) accounting for the remaining proportion. The aim of this study was to evaluate the association between SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A validated reversed-phase HPLC method was used to quantify 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin, which were expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations between somatic cell score (SCS) combined with DSCC and the protein fractions expressed quantitatively and qualitatively. We ran an additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the protein fractions were expressed as grams per liter, SCS was significantly negatively associated with almost all the casein fractions and positively associated with the whey protein α-lactalbumin, while DSCC was significantly associated with αS1-CN, β-CN, and α-lactalbumin, but in the opposite direction to SCS. We observed the same pattern with the qualitative data (i.e., %N), confirming opposite effects of SCS and DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits of concern, although the pattern observed was the same as when both SCS and DSCC were included in the model. The MAC count, however, generally had a greater impact on many casein fractions, in particular decreasing both β-CN content (g/L) and proportion (%N), and exhibited the opposite pattern to the PMN-LYM count. Our results show that information obtained from both SCS and DSCC may be useful in assessing milk quality and protein fractions. They also demonstrate the potential of MAC count as a novel udder health trait. 相似文献
5.
Dosogne H Vangroenweghe F Mehrzad J Massart-Leën AM Burvenich C 《Journal of dairy science》2003,86(3):828-834
Whereas many differential leukocyte count methods for high somatic cell count (SCC) milk from mastitic cows are available, only a few have been developed for low SCC milk. We have developed a flow cytometric differential leukocyte count method for low SCC milk. The procedure consists of 1) 1.5 ml of diluted milk sample (30%, vol/vol dilution with PBS), 2) centrifugation, 3) leukocyte labeling with SYTO 13 and 4) flow cytometric analysis. Four major leukocyte populations can be clearly identified in the green fluorescence-side scatter dot plot: lymphocytes and monocytes (LM), polymorphonuclear neutrophils (PMN), mature macrophages (Mphi), and cells with apoptotic features based on chromatin condensation and nuclear fragmentation. The optimal processing temperature was 20 degrees C. Significant differences among samples with similar differential leukocyte counts were found. Storage of milk samples during 2 d at 7 degrees C had no effect on differential leukocyte count. Using the new method, differential leukocyte count was performed in low SCC milk samples from cows in early, mid, and late lactation. In accordance with previous studies, PMN and Mphi percentages were lower and LM percentages were higher in early lactation than in the other stages of lactation. The percentage of cells with apoptotic features was higher in early lactation than in mid and late lactation. In conclusion, a rapid, simple, accurate, and reproducible standard procedure was developed to determine the differential leukocyte count (Mphi, PMN, LM, and cells with apoptotic features) of bovine low SCC milk. 相似文献
6.
7.
《Journal of dairy science》2022,105(7):6251-6260
Poor udder health status can have a detrimental effect on milk yield and reproductive performance, leading to reductions in the dairy farm profit. The objective of this retrospective longitudinal study was to assess the associations of somatic cell count (SCC) with daily milk yield and reproductive performance. A database with 1,930,376 lactations from 867 Argentinean grazing dairy herds records collected for 14 years was used. The association of the evolution of SCC (healthy vs. new case vs. cured vs. chronic; with 150,000 SCC/mL as threshold) and of the severity of SCC [mild (150,000–400,000 SCC/mL) vs. moderate (400,000–1,000,000 SCC/mL) vs. severe (>1,000,000 SCC/mL)] with the odds for conception were estimated. Finally, the associations of the linear score of SCC (LS-SCC) with daily milk yield were estimated depending on parity and milk production quartile. The odds ratios (CI 95%) for conception at first service were 0.921 (0.902–0.941), 0.866 (0.848–0.884), and 0.842 (0.826–0.859) for the new case, cured, and chronic cows compared with healthy cows, respectively. Also, the odds ratios (CI 95%) for conception were 0.902 (0.881–0.925), 0.837 (0.808–0.866) and 0.709 (0.683–0.736) for mild, moderate and severe cases compared with healthy cows, respectively. An increase of one point of LS-SCC was associated with decreases of 0.349, 0.539, and 0.676 kg in daily milk yield for first-, second-, and third-lactation cows, respectively. In conclusion, SCC is negatively associated with the risk for conception and with daily milk yield in grazing dairy cows. This negative relationship with conception is higher when SCC increase occurs after the service date and it is influenced by severity of mastitis, and in the case of milk yield, the negative association is influenced by parity, milk production quartile, and severity of mastitis. 相似文献
8.
The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R2 value was very small (0.02–0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC. 相似文献
9.
ABDELGAWAD SALAH EL‐TAHAWY ALI HAFEZ EL‐FAR 《International Journal of Dairy Technology》2010,63(3):463-469
The objective of this paper was to investigate seasonal variations in bulk somatic cell totals and milk composition, evaluate the influence of somatic cell count (SCC) on milk fat and protein content and determine the effects of SCC on dairy farm profitability. A total of 1440 samples were analysed. Data were obtained by randomly collecting five samples of bulk tank milk from each of 24 dairy farms every month from April 2008 to March 2009. Milk was analysed for titratable protein, fat content and SCC (direct microscopic cell count). The highest total bulk SCCs were observed during autumn and winter. Conversely, higher levels of milk fat and protein were generated during spring and summer. A significant negative correlation was noted between SCC and milk composition, daily milk yield and milk returns. By logarithmic function, a significant negative relationship was observed between SCC and milk composition or milk returns. In conclusion, this study demonstrates that the SCC is a useful tool for judging dairy farm profit and milk quality. 相似文献
10.
《Journal of dairy science》2022,105(2):1387-1401
Antibiotic dry cow therapy (aDCT) at the end of lactation is an effective mastitis control measure. Selective dry cow therapy means that only infected or presumed-infected cows are treated, instead of aDCT being used as a treatment for all cows. Because antibiotic resistance poses a global threat, livestock production is under increasing pressure to reduce antibiotic use. Changes in management should not, however, impair animal welfare or cause significant economic losses. Our objective was to compare milk yield and somatic cell count (SCC) between aDCT-treated and untreated cows in herds that used selective aDCT, taking into account risk factors for reduced yield and high SCC. The information source was 2015 to 2017 Dairy Herd Improvement data, with 4,720 multiparous cows from 172 Finnish dairy farms. The response variables were test-day milk yield (kg/d) and naturally log-transformed composite SCC (×1,000 cells/mL) during the first 154 d in milk (DIM). The statistical tool was a linear mixed-effects model with 2-level random intercepts, cows nested within herds, and a first-order autoregressive [AR(1)] correlation structure. The overall proportion of aDCT-treated cows was 25% (1,176/4,720). Due to the interaction effect, SCC on the last test day prior to dry-off affected postcalving milk yield differently in aDCT-treated cows than in untreated cows. A higher SCC prior to dry-off correlated with a greater daily yield difference after calving between cows treated and untreated. The majority of cows had SCC < 200,000 cells/mL before dry-off, and as SCC before dry-off decreased, difference in yield between aDCT-treated and untreated cows decreased. Postcalving SCC was lower for aDCT-treated cows compared with untreated cows. To illustrate, for cows with an SCC of 200,000 cells/mL before dry-off, compared with untreated cows, aDCT-treated cows produced 0.97 kg/d more milk and, at 45 DIM, had an SCC that was 20,000 cells/mL lower. Higher late-lactation SCC and lactational mastitis treatments were associated with higher postcalving SCC. A dry period lasting more than 30 d was associated with higher yields but not with SCC. Our findings indicate that a missed aDCT treatment for a high-SCC cow has a negative effect on subsequent lactation milk yield and SCC, which emphasizes the importance of accurate selection of cows to be treated. 相似文献
11.
S. Pegolo D. Giannuzzi V. Bisutti R. Tessari M.E. Gelain L. Gallo S. Schiavon F. Tagliapietra E. Trevisi P. Ajmone Marsan G. Bittante A. Cecchinato 《Journal of dairy science》2021,104(4):4822-4836
The aim of this study was to investigate the associations between differential somatic cell count (DSCC) and milk quality and udder health traits, and for the first time, between DSCC and milk coagulation properties and cheesemaking traits in a population of 1,264 Holstein cows reared in northern Italy. Differential somatic cell count represents the combined proportions of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in the total somatic cell count (SCC), with macrophages (MAC) making up the remaining proportion. The milk traits investigated in this study were milk yield (MY), 8 traits related to milk composition and quality (fat, protein, casein, casein index, lactose, urea, pH, and milk conductivity), 9 milk coagulation traits [3 milk coagulation properties (MCP) and 6 curd firming (CF) traits], 7 cheesemaking traits, 3 cheese yield (CY) traits, and 4 milk nutrient recovery in the curd (REC) traits. A linear mixed model was fitted to explore the associations between SCS combined with DSCC and the aforementioned milk traits. An additional model was run, which included DSCC expressed as the PMN-LYM and MAC counts, obtained by multiplying the percentage of PMN-LYM and MAC by SCC in the milk for each cow in the data set. The unfavorable association between SCS and milk quality and technological traits was confirmed. Increased DSCC was instead associated with a linear increase in MY, casein index, and lactose proportion and a linear decrease in milk fat and milk conductivity. Accordingly, DSCC was favorably associated with all MCP and CF traits (with the exception of the time needed to achieve maximum, CF), particularly with rennet coagulation time, and it always displayed linear relationships. Differential somatic cell count was also positively associated with the recovery of milk nutrients in the curd (protein, fat, and energy), which increased linearly with increasing DSCC. The PMN-LYM count was rarely associated with milk traits, even though the pattern observed confirmed the results obtained when both SCS and DSCC were included in the model. The MAC count, however, showed the opposite pattern: MY, casein index, and lactose percentage decreased and milk conductivity increased with an increasing MAC count. No significant association was found between PMN-LYM count and MCP, CF, CY, and REC traits, whereas MAC count was unfavorably associated with MCP, CF traits, some CY traits, and all REC traits. Our results showed that the combined information derived from SCS and DSCC might be useful to monitor milk quality and cheesemaking-related traits. 相似文献
12.
Genetic and phenotypic correlations between milk coagulation properties (MCP: coagulation time and curd firmness), milk yield, fat content, protein content, ln(somatic cell count) (SCS), casein content, and pH of milk and heritability of these traits were estimated from data consisting of milk samples of 4664 Finnish Ayrshire cows sired by 91 bulls. In addition, differences in average estimated breeding values (EBV) for the above traits between the cows with noncoagulating (NC) milk and those with milk that coagulated (CO samples) were examined. The estimations were carried out to study the possibilities of indirect genetic improvement of MCP by use of the above characteristics. The genetic and phenotypic correlations between MCP and the milk production traits were low or negligible. The genetic associations between desirable MCP and low SCS were rather strong (-0.45 to 0.29). Desirable MCP correlated both genetically and phenotypically with low pH of milk (-0.51 to 0.50). The rather high heritability estimates for curd firmness in different forms (0.22 to 0.39), and the wide variation in the proportion of daughters producing NC milk between the sires (0 to 47%) suggested that noncoagulation of milk is partly caused by additive genetic factors. Based on the genetic correlations between curd firmness and SCS and the high EBV for SCS obtained for the cows with NC-milk, it is possible that the loci causing noncoagulation of milk and increasing somatic cell count of milk are closely linked or partly the same. One means to genetically improve MCP and to reduce the occurrence of NC milk could thus be selection for low somatic cell count of milk. 相似文献
13.
Relationship between somatic cell count and milk yield in different stages of lactation 总被引:1,自引:0,他引:1
The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log2-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk loss in the average lactation affected with SCM was 155 kg of milk (2%) in primiparous cows and 445 kg of milk (5%) in multiparous cows. It was concluded that multiparous cows in late lactation can be expected to be responsible for the majority of the herd-level production loss caused by SCM, and that preventive measures need to focus on reducing the incidence of SCM in such cows. 相似文献
14.
Lactoperoxidase (LPO) is a milk protein with antimicrobial function. The present study was undertaken to examine the correlation between LPO activity and somatic cell count (SCC) in milk to use LPO activity as an indicator of mastitis. Composite milk of 36 cows and quarter milk of 3 cows were collected once per week from 0 to 300 d postpartum and twice per day for 1 wk, respectively. For the measurement of LPO activity, milk was mixed with tetramethylbenzidine solution and incubated at 37°C for 30 min, followed by the measurement of optical density. When only milk with low SCC (132 ± 12 × 103 cells/mL) was used, a significant decrease in LPO activity was detected in primiparous cows from 0 to 4 mo postpartum. Lactoperoxidase activities of primiparous cows in mo 1, 2, and 3 postpartum were significantly higher than those in multiparous cows. When composite milk was divided based on LPO activity, the SCC was significantly higher in the groups with LPO activity >5 and from 3 to 3.9 U/mL in the second- and fourth-parity cows, respectively, compared with the group with LPO activity <2 U/mL. Extremely high SCC were found in the ≥fifth-parity cows, even in low-LPO activity groups. In the case of quarter milk, higher LPO activity was associated with increased SCC in all 3 cows. The percentage of quarter milk samples with high SCC (4,062 ± 415 × 103 cells/mL) increased with an increase in the LPO activity. The percentage of quarter milk samples with high SCC was 50.0 to 100% in the milk with LPO activity ≥5 U/mL. These results indicate that the correlation of LPO activity to the SCC in bovine milk may point to the potential use of the former as an indicator of SCC. 相似文献
15.
This study investigated the changes in somatic cell counts (SCC) in different fractions of milk, with special emphasis on the foremilk and cisternal milk fractions. Therefore, in Experiment 1, quarter milk samples were defined as strict foremilk (F), cisternal milk (C), first 400 g of alveolar milk (A1), and the remaining alveolar milk (A2). Experiment 2 included 6 foremilk fractions (F1 to F6), consisting of one hand-stripped milk jet each, and the remaining cisternal milk plus the entire alveolar milk (RM). In Experiment 1, changes during milking indicated the importance of the sampled milk fraction for measuring SCC because the decrease in the first 3 fractions (F, C, and A1) was enormous in milk with high total quarter SCC. The decline in SCC from F to C was 50% and was 80% from C to A1. Total quarter SCC presented a value of approximately 20% of SCC in F or 35% of SCC in C. Changes in milk with low or very low SCC were marginal during milking. Fractions F and C showed significant differences in SCC among different total SCC concentrations. These differences disappeared with the alveolar fractions A1 and A2. In Experiment 2, a more detailed investigation of foremilk fractions supported the findings of Experiment 1. A significant decline in the foremilk fractions even of F1 to F6 was observed in high-SCC milk at concentrations >350 × 103 cells/mL. Although one of these foremilk fractions presented only 0.1 to 0.2% of the total milk, the SCC was 2- to 3-fold greater than the total quarter milk SCC. Because the trait of interest (SCC) was measured directly by using the DeLaval cell counter (DCC), the quality of measurement was tested. Statistically interesting factors (repeatability, recovery rate, and potential matrix effects of milk) proved that the DCC is a useful tool for identifying the SCC of milk samples, and thus of grading udder health status. Generally, the DCC provides reliable results, but one must consider that SCC even in strict foremilk can differ dramatically from SCC in the total cisternal fraction, and thus also from SCC in the alveolar fraction. 相似文献
16.
不同体细胞数(21.4×104mL-1,75.8×104mL-1,118.1×104mL-1和216.2×104mL-1)原料乳生产的4组UHT乳在37℃贮存84d,对其贮存期间的蛋白水解及脂肪水解进行研究。结果表明,4组UHT乳贮存期间的蛋白水解速率无显著性差异(P>0.05),原料乳体细胞数并未对蛋白水解造成影响;4组UHT乳贮存期间的脂肪水解速率具有显著性差异(P<0.005),原料乳体细胞数与脂肪水解速率间存在极明显的正相关(R=0.9886,P<0.05)。 相似文献
17.
We investigated the hypothesis that somatic cell counts (SCC) in milk are influenced by the vibration and noise experienced by dairy cows during milking. We therefore measured vibration and noise on 50 Swiss dairy farms (with herringbone, autotandem, side-by-side, or carousel parlors), where we also collected bulk tank SCC. Somatic cell counts increased with an increasing intensity of vibration but not with acoustic noise. Cows milked in autotandem and side-by-side parlors had lower SCC than those in the other 2 types of milking parlors. On 12 farms where the milking system was modified to reduce vibration and noise, SCC also dropped. In addition, the relative improvement in SCC seemed to be correlated with the relative improvement in the reduction of vibration but not with the improvement in acoustic noise. A reduction in vibration (structure-borne sonic waves) seemed to improve udder health, which may have been mediated by the increased well-being and reduced stress of cows during milking. 相似文献
18.
目的调查我国生牛乳菌落总数和体细胞数情况,分析养殖模式与区域等因素对我国生牛乳菌落总数和体细胞数的影响。方法对17个省(市、自治区)2014—2015年连续12个月共17 527份生牛乳样品菌落总数的数据和6 633份体细胞数的数据进行研究,采用SPSS 19.0的Kruskal-Wallis秩和检验分析养殖模式和养殖区域对生牛乳菌落总数和体细胞数的影响。结果我国生牛乳中的菌落总数、体细胞数的平均值分别为3.27×10~5CFU/ml、46.0万个/ml。来自牧场、养殖小区、散户的生牛乳样品菌落总数的中位数分别为1.00×10~5、1.85×10~5、2.37×10~5CFU/ml,体细胞数的中位数分别为35.0万、73.0万、59.1万个/ml;东北内蒙古产区、华北产区、南方产区、大城市周边产区、西部产区生牛乳菌落总数的中位数分别为2.40×10~5、1.43×10~5、1.50×10~5、1.60×10~5、2.14×10~5CFU/ml,体细胞数的中位数分别为57.2万、33.0万、38.2万、56.0万、40.0万个/ml。结论生牛乳的菌落总数99%以上均可达到我国现行标准的要求,标准对菌落总数的要求有进一步提升的空间。来自大规模牧场的生牛乳菌落总数和体细胞数均较低。 相似文献
19.
Changes of protein content and its fractions in bovine milk from different breeds subject to somatic cell count 总被引:2,自引:0,他引:2
Global milk production is undeniably dominated by 2 dairy breeds recognized worldwide: Holstein-Friesian and Jersey. A third breed, Simmental, serves as a dual-purpose breed. The objective of the present research was to establish potential changes in the fractional components of bovine milk protein (mainly whey) in relation to the health status of a dairy cow's mammary glands, which is closely determined by somatic cell count (SCC). The milk of 3 breeds was studied: Polish Holstein-Friesian (Black and Red-White varieties), Simmental, and Jersey. The cows were housed in freestall barns and fed according to the total mixed ration feeding system for both winter and summer periods. Milk samples were collected individually from each cow twice a year, in the winter and summer seasons. A total of 1,822 milk samples were evaluated (946 in winter and 876 in summer). The milk was examined for SCC, crude protein, casein, and whey fraction proteins (α-lactalbumin, β-lactoglobulin, lactoferrin, BSA, and lysozyme). The research material for each breed was split into 4 groups based on SCC (group I: ≤100,000 cells/mL; group II: 101,000 to 400,000 cells/mL; group III: 401,000 to 500,000 cells/mL; and group IV: 501,000 to 1,000,000 cells/mL). It was found that an increase of SCC promulgated a progressive decline in the daily yield of milk, which was significantly true for the Polish Holstein-Friesian. The level of crude protein decreased slightly as SCC increased, and casein concentration (r = −0.591) also followed this trend of decline. Elevation of SCC produced a decrease of major albumins (i.e., α-lactalbumin and β-lactoglobulin). However, SCC increase induced an increase in the immunoactive proteins (lactoferrin and lysozyme) as well as BSA. The interactions of a breed with increased SCC, which can be measured based on the BSA content of the milk, has indicated various levels of susceptibility to the increase in different breeds. This is confirmed by different values of correlation coefficients for these relationships: 0.71 in the Holstein-Friesian, 0.58 in Simmental, and 0.47 in the Jersey cows. Holstein-Friesian cows are more sensitive to mammary gland infections causing a greater decline of their daily milk yields, which, in turn, is reflected in an increase of the negative value of the correlation coefficients between SCC and milk efficiency (−0.24). In the other 2 breeds, the correlations were also negative, but substantially lower (−0.12 and −0.15). 相似文献
20.
Corporal hygiene is an important indicator of welfare for dairy cows and is dependent on facilities, climate conditions, and the behavior of the animals. The objectives of this study were to describe how the hygiene conditions of dairy cows vary over time and to assess whether a relationship exists between hygiene and somatic cell count (SCC) in milk. Monthly hygiene evaluations were conducted on lactating cows in 2 dairy farms for 9 consecutive months, totaling 3,554 evaluations from 545 animals. Hygiene was measured using a 4-point scoring system (very clean, clean, dirty, and very dirty) for 4 areas of the animal's body (leg, flank, abdomen, and udder) and combining these scores to generate a composite cleanliness score. A total of 2,218 milk samples was analyzed from 404 cows to determine SCC and somatic cell linear scores (SCLS). Individual variation was observed in the hygiene of cows throughout the year, with the highest proportion of clean cows being observed in August and the lowest in January. In spite of this seasonal variation, approximately half (55.62%) of the cows displayed consistent cleanliness scores, with 45.86% of them remaining consistently clean (very clean or clean) and 9.76% remaining dirty (very dirty or dirty) over the course of the study. The very clean cows had the lowest SCLS, followed by the clean, dirty, and very dirty cows (no statistically significant differences were found between the latter 2 groups). The most critical months for cow hygiene were those with the greatest rainfall, when a reduction in the welfare of cows and higher SCC values were observed. The evaluation and control of dairy cow hygiene are useful in defining management strategies to reduce problems with milk and improve the welfare of the animals. 相似文献