首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheep milk is mainly transformed into cheese; thus, the dairy industry seeks more rapid and cost-effective methods of analysis to determine milk coagulation and acidity traits. This study aimed to assess the feasibility of Fourier-transform mid-infrared spectroscopy to determine milk coagulation and acidity traits of sheep bulk milk and to classify milk samples according to their renneting capacity. A total of 465 bulk milk samples collected in 140 single-breed flocks of Comisana (84 samples, 24 flocks) and Sarda (381 samples, 116 flocks) breeds located in Central Italy were analyzed for coagulation properties (rennet coagulation time, curd firming time, and curd firmness) and acidity traits (pH and titratable acidity) using standard laboratory procedures. Fourier-transform mid-infrared spectroscopy prediction models for these traits were built using partial least squares regression analysis and were externally validated by randomly dividing the full data set into a calibration set (75%) and a validation set (25%). The discriminant capacity of the rennet coagulation time prediction model was determined using partial least squares discriminant analysis. Prediction models were more accurate for acidity traits than for milk coagulation properties, and the ratio of prediction to deviation ranged from 1.01 (curd firmness) to 2.14 (pH). Moreover, the discriminant analysis led to an overall accuracy of 74 and 66% for the calibration and validation sets, respectively, with greater sensitivity for samples that coagulated between 10 and 20 min and greater specificity to detect early-coagulating (<10 min) and late-coagulating (20–30 min) samples. Results suggest that Fourier-transform mid-infrared spectroscopy has the potential to help the dairy sheep industry identify milk with better coagulation ability for cheese production and thus improve milk transformation efficiency. However, further research is needed before this information can be exploited at the industry level.  相似文献   

2.
《Journal of dairy science》2014,97(6):3800-3814
Two different types of pasture (cultivated and rangeland) and 2 different hay qualities (high and low quality) were examined for their effects on goat milk composition and rennet coagulation properties. Furthermore, the effect of dietary treatments in both the early and late grazing season was studied. As lactation stage is known to influence milk composition, the goats in the early and late grazing season were in the same lactation stage at the start of the experiment. The milk composition was influenced both by dietary treatment and season. Milk from goats on pasture was superior to those on hay by containing a higher content of protein and casein, and the goats on cultivated pasture had the highest milk yield. Casein composition was significantly influenced by forage treatment. Goats grazing on cultivated pasture had higher contents of αs1-casein and also of κ-casein compared with the other treatments, whereas goats grazing on rangeland had the highest content of β-casein. Factors such as milk yield, casein micelle size, αs2-casein, and calcium content were reduced in late compared with early season. More favorable rennet coagulation properties were achieved in milk from the early grazing season, with shorter firming time and higher curd firmness compared with milk from the late grazing season, but the firming time and curd firmness were not prominently influenced by forage treatment. The content of αs2-casein and calcium in the milk affected the firming time and the curd firmness positively. The influence of season and forage treatment on especially milk yield, casein content, and rennet coagulation properties is of economic importance for both the dairy industry and goat milk farmers.  相似文献   

3.
Traditional milk coagulation properties are used to predict the suitability of milk for cheese-making. In bovine and ovine species, the introduction of the concept of curd firming over time, continuously recorded by a lactodynamograph during prolonged tests, provides additional information about milk coagulation, curd-firming, and syneresis processes. The aims of present study were (1) to test the adaptability of a 4-parameter curd-firming model in the assessment of goat milk (also comparing published data of other species); (2) to describe variability of coagulation, curd firming, and syneresis processes among individual goat milk samples; (3) to quantify the effects of farm and animal factors (breed, parity, and stage of lactation); and (4) to compare 6 goat breeds for their model parameters. Milk samples from 1,272 goats reared in 35 farms were collected. Goats were of 6 breeds: Saanen and Camosciata delle Alpi for the Alpine type; and Murciano-Granadina, Maltese, Sarda, and Sarda Primitiva for the Mediterranean type. During a lactodynamographic analysis (60 min), 240 measures of curd firmness (mm) were recorded for each milk sample. The modeling of curd firming allowed us to achieve the rennet coagulation time estimated on the basis of all the data points (min); the curd firming and the curd syneresis instant rate constants; the asymptotical potential value of curd firming; the actual maximum curd firmness; and the time at which the curd firming maximum level is attained. Modeling parameter data were analyzed using a linear mixed model. Comparison with other dairy species showed several differences: goat milk coagulated later than sheep but earlier than bovine, and curd firming and curd syneresis instant rate constants were greater in small ruminants. Modeling parameters of goat milk were mostly affected by the farm effect (37% of the total variance, on average) compared with the results found for bovine and ovine samples, and this was probably attributable to the marked differences among goat farming systems. Small differences were demonstrated between Alpine and Mediterranean breeds, but the time of maximum curd firmness was lower in Murciano-Granadina compared with Maltese, Sarda, and Sarda Primitiva. Sarda and Sarda Primitiva were very similar and exhibited the most favorable coagulation properties of milk. For almost all the model parameters, the direct effect of breed was increased after correction for milk yield and composition. In conclusion, this approach allowed us to fully depict the effects of the different factors on coagulation of goat milk, and clarified the different renneting pattern among goat breeds, and with other species. Results could be used for the valorization of goat dairy products, also when these are linked to particular local breeds, and to stimulate further studies about relationships between coagulation and cheese-making traits.  相似文献   

4.
Milk processing attributes represent a group of milk quality traits that are important to the dairy industry to inform product portfolio. However, because of the resources required to routinely measure such quality traits, precise genetic parameter estimates from a large population of animals are lacking for these traits. Milk processing characteristics considered in the present study—rennet coagulation time, curd-firming time, curd firmness at 30 and 60 min after rennet addition, heat coagulation time, casein micelle size, and milk pH—were all estimated using mid-infrared spectroscopy prediction equations. Variance components for these traits were estimated using 136,807 test-day records from 5 to 305 d in milk (DIM) from 9,824 cows using random regressions to model the additive genetic and within-lactation permanent environmental variances. Heritability estimates ranged from 0.18 ± 0.01 (26 DIM) to 0.38 ± 0.02 (180 DIM) for rennet coagulation time; from 0.26 ± 0.02 (5 DIM) to 0.57 ± 0.02 (174 DIM) for curd-firming time; from 0.16 ± 0.01 (30 DIM) to 0.56 ± 0.02 (271 DIM) for curd firmness at 30 min; from 0.13 ± 0.01 (30 DIM) to 0.48 ± 0.02 (271 DIM) for curd firmness at 60 min; from 0.08 ± 0.01 (17 DIM) to 0.24 ± 0.01 (180 DIM) for heat coagulation time; from 0.23 ± 0.02 (30 DIM) to 0.43 ± 0.02 (261 DIM) for casein micelle size; and from 0.20 ± 0.01 (30 DIM) to 0.36 ± 0.02 (151 DIM) for milk pH. Within-trait genetic correlations across DIM weakened as the number of days between compared intervals increased but were mostly >0.4 except between the peripheries of the lactation. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix for all traits revealed that at least the 80% of the genetic variation among animals in lactation profiles was associated with the height of the lactation profile. Curd-firming time and curd firmness at 30 min were weakly to moderately genetically correlated with milk yield (from 0.33 ± 0.05 to 0.59 ± 0.05 for curd-firming time, and from ?0.62 ± 0.03 to ?0.21 ± 0.06 for curd firmness at 30 min). Milk protein concentration was strongly genetically correlated with curd firmness at 30 min (0.84 ± 0.02 to 0.94 ± 0.01) but only weakly genetically correlated with milk heat coagulation time (?0.27 ± 0.07 to 0.19 ± 0.06). Results from the present study indicate the existence of exploitable genetic variation for milk processing characteristics. Because of possible indirect deterioration in milk processing characteristics due to selection for greater milk yield, emphasis on milk processing characteristics is advised.  相似文献   

5.
Sheep milk is an important source of food, especially in Mediterranean countries, and is used in large part for cheese production. Milk technological traits are important for the sheep dairy industry, but research is lacking into the genetic variation of such traits. Therefore the aim of this study was to estimate the heritability of traditional milk coagulation properties and curd firmness modeled on time t (CFt) parameters, and their genetic relationships with test-day milk yield, composition (fat, protein, and casein content), and acidity in Sarda dairy sheep. Milk samples from 1,121 Sarda ewes from 23 flocks were analyzed for 5 traditional coagulation properties by lactodynamographic tests conducted for up to 60 min: rennet coagulation time (min), curd-firming time (k20, min), and 3 measures of curd firmness (a30, a45, and a60, mm). The 240 curd firmness observations (1 every 15 s) from each milk sample were recorded, and 4 parameters for each individual sample equation were estimated: rennet coagulation time estimated from the equation (RCTeq), the asymptotic potential curd firmness (CFP), the curd firming instant rate constant (kCF), and the syneresis instant rate constant (kSR). Two other derived traits were also calculated (CFmax, the maximum curd firmness value; and tmax, the attainment time). Multivariate analyses using Bayesian methodology were performed to estimate the genetic relationships of milk coagulation properties and CFt with the other traits; statistical inference was based on the marginal posterior distributions of the parameters of concern. The marginal posterior distribution of heritability estimates of milk yield (0.16 ± 0.07) and composition (0.21 ± 0.11 to 0.28 ± 0.10) of Sarda ewes was similar to those often obtained for bovine species. The heritability of rennet coagulation time as a single point trait was also similar to that frequently obtained for cow milk (0.19 ± 0.09), whereas the same trait calculated as an individual equation parameter exhibited larger genetic variation and a higher heritability estimate (0.32 ± 0.11). The other curd firming and syneresis traits, whether as traditional single point observations or as individual equation parameters and derived traits, were characterized by heritability estimates lower than for coagulation time and for the corresponding bovine milk traits (0.06 to 0.14). Phenotypic and additive genetic correlations among the 11 technological traits contribute to describing the interdependencies and meanings of different traits. The additive genetic relationships of these technological traits with the single test-day milk yield and composition were variable and showed milk yield to have unfavorable effects on all measures of curd firmness (a30, a45, a60, CFP, and CFmax) and tmax, but favorable effects on both instant rate constants (kCF and kSR). Milk fat content had a positive effect on curd firmness traits, especially on those obtained from CFt equations, whereas the negative effects on both coagulation time traits were attributed to the milk protein and casein contents. Finally, in view of the estimated heritabilities and additive genetic correlations, enhancement of technological traits of sheep milk through selective breeding could be feasible in this population.  相似文献   

6.
Despite milk processing characteristics being important quality traits, little is known about the factors underlying their variability, due primarily to the resources required to measure these characteristics in a sufficiently large population. Cow milk coagulation properties (rennet coagulation time, curd-firming time, curd firmness 30 and 60 min after rennet addition), heat coagulation time, casein micelle size, and pH were generated from available mid-infrared spectroscopy prediction models. The prediction models were applied to 136,807 spectra collected from 9,824 Irish dairy cows from research and commercial herds. Sources of variation were investigated using linear mixed models that included the fixed effects of calendar month of test; milking time in the day; linear regressions on the proportion of Friesian, Jersey, Montbéliarde, Norwegian Red, and “other” breeds in the cow; coefficients of heterosis and of recombination loss; parity; stage of lactation; and the 2-way interaction parity × stage of lactation. Within- and across-parity cow effects, contemporary group, and a residual term were also included as random effects in the model. Supplementary analyses considered the inclusion of either test-day milk yield or milk protein concentration as fixed-effects covariates in the multiple regression models. Milk coagulation properties were most favorable (i.e., short rennet coagulation time and strong curd firmness) for cheese manufacturing in early lactation, concurrent with the lowest values of both pH and casein micelle size. Milk coagulation properties and pH deteriorated in mid lactation but improved toward the end of lactation. In direct contrast, heat coagulation time was more favorable in mid lactation and less suitable (i.e., shorter) for high temperature treatments in both early and late lactation. Relative to multiparous cows, primiparous cows, on average, yielded milk with shorter rennet coagulation time and longer heat coagulation time. Milk from the evening milking session had shorter rennet coagulation time and greater curd firmness, as well as lower heat coagulation time and lower pH compared with milk from the morning session. Jersey cows, on average, yielded milk more suitable for cheese production rather than for milk powder production. When protein concentration was included in the model, the improvement of milk coagulation properties toward the end of lactation was no longer apparent. Results from the present study may aid in decision-making for milk manufacturing, especially in countries characterized by a seasonal supply of fresh milk.  相似文献   

7.
The aim of the present study was to investigate sources of variation of milk composition and technological characteristics routinely collected in field conditions in the Italian dairy industry. A total of 40,896 bulk milk records from 620 herds and 10 regions across Italy were analyzed. Composition traits were fat, protein, and casein percentages, urea content, and somatic cell score; and technological characteristics were rennet coagulation time, curd firming time, curd firmness 30 min after rennet addition to milk, and titratable acidity. Data of herd bulk milks were analyzed using a model that included fixed effects of region, herd nested within region, and season of milk analysis. An average good milk quality was reported in the dairy industry (especially concerning fat, protein, and casein percentages), and moderate to high correlations between composition and technological traits were observed. All factors included in the statistical model were significant in explaining the variation of the studied traits except for region effect in the analysis of casein and somatic cell score. Northeast and central-southern Italian regions showed the best performance for composition and technological features, respectively. Traits varied greatly across regions, which could reflect differences in herd management and strategies. Overall, less suitable milk for dairy processing was observed in summer. Results of the present study suggested that a constant monitoring of technological traits in the dairy industry is necessary to improve production quality at herd level and it may be a way to segregate milk according to its processing characteristics.  相似文献   

8.
《Journal of dairy science》2022,105(8):6724-6738
At the global level, the quantity of goat milk produced and its gross production value have increased considerably over the last 2 decades. Although many scientific papers on this topic have been published, few studies have been carried out on bulk goat milk samples. The aim of the present study was to investigate in the field the effects of farming system, breed type, individual flock, and stage of production on the composition, coagulation properties (MCP), curd firming over time parameters (CFt), predicted cheese yield (CY%), and nutrient recovery traits (REC) of 432 bulk milk samples from 161 commercial goat farms in Sardinia, Italy. We found that the variance due to individual flock was of the same order as the residual variance for almost all composition and cheesemaking traits. With regard to the fixed effects, the effect of farming system on bulk milk variability was not highly significant for the majority of traits (it was lower than individual flock), whereas the effects of breed type and stage of production were much higher. More specifically, the intensive farms produced milk with the best concentrations of almost all constituents, whereas extensive farms exhibited faster rennet coagulation times, a slower rate of curd firming, lower potential curd firmness, and lower percentages of fat and energy recoveries in the fresh curd. Farms rearing the local breed, Sarda, alone or together with the Maltese breed, produced milk with the best concentrations of fat and protein, superior curd firmness, and better predicted percentage of fresh curd (CYCURD) and recovery traits. The results show the potential of both types of breed, either for their quantitative (specialized breeds) or their qualitative (local breeds) attributes. As expected, the concentrations of fat, protein fractions, and lactose were influenced by the stage of production, with samples collected in the early stage of production (in February and March) having a greater quantity of the main constituents. Somatic cells reached the highest levels in the late stage of production, which corresponds to the goats' advanced stage of lactation (June–July), although no differences were present in the logarithmic bacterial counts between the early and late stages. Regarding cheesemaking potential, bulk milk samples of the late stage were characterized by delayed rennet coagulation and curd firming times, the lowest values of curd firmness, and a general reduction in CY%, and REC traits. In conclusion, we highlight several issues regarding the effects of the most important sources of variation on bulk goat milk, and point to some critical factors relevant for improving dairy goat farming and milk production.  相似文献   

9.
《Journal of dairy science》2022,105(8):6773-6782
Milk coagulation ability is of central importance for the sheep dairy industry because almost all sheep milk is destined for cheese processing. The occurrence of milk with impaired coagulation properties is an obstacle to cheese processing and, in turn, to the profitability of the dairy companies. In this work, we investigated the causes of noncoagulation of sheep milk; specifically, we studied the effect of milk physicochemical properties on milk coagulation status [coagulating and noncoagulating (NC) milk samples, which do or do not coagulate within 30 min, respectively], and whether mid-infrared spectroscopy (MIR) could be used to assess variability in coagulation status. We also investigated the genetic background of milk coagulation ability. Individual milk samples were collected from 996 Sarda ewes farmed in 47 flocks located in Sardinia (Italy). Considered traits were daily milk yield, milk composition traits, and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness), and MIR spectra were acquired. About 9% of samples did not coagulate within 30 min. A logistic regression approach was used to test the effect of milk-related traits on milk coagulation status. A principal component (PC) analysis was carried out on the milk MIR spectra, and PC scores were then used as covariates in a logistic regression model to assess their relationship with milk coagulation status. Results of the present work demonstrated that the probability of having NC samples increases as milk contents of proteins and chlorides and somatic cell score increase. The analysis of PC extracted from milk spectra that influenced coagulation status highlighted key regions associated with lactose and protein concentrations, and others not associated with routinely collected milk composition traits. These results suggest that the occurrence of NC is mostly related to damage of the epithelium secretory mammary cells, which occurs with the advancement of a lactation or due to unhealthy mammary gland status. Genetic analysis of milk coagulation status and of the extracted PC confirmed the genetic background of the milk coagulability of sheep milk.  相似文献   

10.
The global production of sheep milk is growing, and the main industrial use of sheep milk is cheese making. The Spanish Churra sheep breed is one of the most important native dairy breeds in Spain. The present study aimed to estimate genetic parameters for a wide range of traits influencing the cheese-making ability of Churra sheep milk. Using a total of 1,049 Churra ewes, we studied the following cheese-making traits: 4 traits related to milk coagulation properties (rennet coagulation time, curd-firming time, and curd firmness at 30 and 60 min after addition of rennet), 2 traits related to cheese yield (individual laboratory cheese yield and individual laboratory dried curd yield), and 3 traits measuring curd firmness over time (maximum curd firmness, time to attain maximum curd firmness, and syneresis). In addition, a list of milk traits, including the native pH of the milk and several milk production and composition traits (milk yield; the fat, protein, and dried extract percentages; and the somatic cell count), were also analyzed for the studied animals. After discarding the noncoagulating samples (only 3.7%), data of 1,010 ewes were analyzed with multiple-trait animal models by using the restricted maximum likelihood method to estimate (co)variance components, heritabilities, and genetic correlations. In general, the heritability estimates were low to moderate, ranging from 0.08 (for the individual laboratory dried curd yield trait) to 0.42 (for the fat percentage trait). High genetic correlations were found within pairs of related traits (i.e., 0.93 between fat and dried extract percentages, ?0.93 between the log of the curd-firming time and curd firmness at 30 min, 0.70 between individual laboratory cheese yield and individual laboratory dried curd yield, and ?0.94 between time to attain maximum curd firmness and syneresis). Considering all the information provided here, we suggest that in addition to the current consideration of the protein percentage trait for improving cheese yield traits, the inclusion of the pH of milk as a measured trait in the Churra dairy breeding program would represent an efficient strategy for improving the cheese-making ability of milk from this breed.  相似文献   

11.
Milk coagulation properties (MCP) are an important aspect in assessing cheese-making ability. Several studies showed that favorable conditions of milk reactivity with rennet, curd formation rate, and curd strength, as well as curd syneresis, have a positive effect on the entire cheese-making process and subsequently on the ripening of cheese. Moreover, MCP were found to be heritable, but little scientific literature is available about their genetic aspects. The aims of this study were to estimate heritability of MCP and genetic correlations among MCP and milk production and quality traits. A total of 1,071 Italian Holstein cows (progeny of 54 sires) reared in 34 herds in Northern Italy were sampled from January to July 2004. Individual milk samples were collected during the morning milking and analyzed for coagulation time (RCT), curd firmness (a30), pH, titratable acidity, fat, protein, and casein contents, and somatic cell count. About 10% of individual milk samples did not coagulate in 31 min, so they were removed from the analyses. Estimates of heritability for RCT and a30 were 0.25 ± 0.04 and 0.15 ± 0.03, respectively. Estimates of genetic correlations between MCP traits and milk production traits were negligible except for a30 with protein and casein contents (0.44 ± 0.10 and 0.53 ± 0.09, respectively). Estimates of genetic correlations between MCP traits and somatic cell score were strong and favorable, as well as those between MCP and pH and titratable acidity. Selecting for high casein content, milk acidity, and low somatic cell count might be an indirect way to improve MCP without reducing milk yield and quality traits.  相似文献   

12.
The aim of this study was to assess the role of milk protein fractions in the coagulation, curd firming, and syneresis of bovine milk. Analyses were performed on 1,271 individual milk samples from Brown Swiss cows reared in 85 herds classified into 4 types of farming systems, from the very traditional (tied cows, feed manually distributed, summer highland pasture) to the most modern (loose cows, use of total mixed rations with or without silage). Fractions αS1-casein (CN), αS2-CN, β-CN, κ-CN, β-lactoglobulin (LG), and α-lactalbumin (LA) and genotypes at CSN2, CSN3, and BLG were obtained by reversed-phase HPLC. The following milk coagulation properties were measured with a lactodynamograph, with the testing time extended to 60 min: rennet coagulation time (RCT, min), curd firming time (min), and curd firmness at 30 and 45 min (mm). All the curd firmness measures recorded over time (total of 240 observations/sample) were used in a 4-parameter nonlinear model to obtain parameters of coagulation, curd firming, and syneresis: RCT estimated from the equation (min), asymptotic potential curd firmness (mm), the curd firming and syneresis instant rate constants (%/min), and the maximum curd firmness value (CFmax, mm) and the time taken to reach it (min). All the aforementioned traits were analyzed with 2 linear mixed models, which tested the effects of the protein fractions expressed in different ways: in the first, quantitative model, each protein fraction was expressed as content in milk; in the second, qualitative model, each protein fraction was expressed as a percentage of total casein content. Besides proteins, additional nuisance parameters were herd (included as a random effect), daily milk production (only for the quantitative model), casein content (only for the qualitative model), dairy system, parity, days in milk, the pendulum of the lactodynamograph, and the CSN2, CSN3, and BLG genotypes. Both αS1-CN and β-CN showed a clear and favorable effect on CFmax, where the former effect was almost double the latter. Milk coagulation ability was favorably affected by κ-CN, which reduced both the RCT and RCT estimated from the equation, increased the curd firming and syneresis instant rate constants, and allowed a higher CFmax to be reached. In contrast, αS2-CN delayed gelation time and β-LG worsened curd firming, both resulting in a low CFmax. The results of this study suggest that modification of the relative contents of specific protein fractions can have an enormous effect on the technological behavior of bovine milk.  相似文献   

13.
Ewe raw milk composition, rennet coagulation parameters, and curd texture were monitored throughout the milk production season in 11 commercial flocks reared under a part-time grazing system. Milking season lasted from February to July. During that period, the diet of the animals shifted from indoor feeding, consisting of concentrate and forage, to an outdoor grazing diet. Lean dry matter, fat, protein, calcium, and magnesium contents increased throughout the milking season, as did rennet coagulation time, curd firmness, and curd resistance to compression. However, lean dry matter, protein content, and curd resistance to compression stabilized when sheep started to graze. Principal component analysis correlated curd resistance to compression and proteins, whereas curd firmness was highly correlated with fat content and minerals. Discriminant analysis distributed milk samples according to the feeding management. Curd firmness, fat, and magnesium turned out to be discriminant variables. Those variables reflected the evolution of the composition and coagulation parameters when fresh pasture prevailed over other feeds in the diet of the flocks. The present study shows that seasonal changes associated with feeding management influence milk technological quality and that milk of good processing quality can be obtained under part-time grazing.  相似文献   

14.
The enhancement of milk coagulation properties (MCP) and the reuse of whey produced by the dairy industry are of great interest to improve the efficiency of the cheese-making process. Native whey proteins (WP) can be aggregated and denatured to obtain colloidal microparticulated WP (MWP). The objective of this study was to assess the effect of MWP on MCP; namely, rennet coagulation time (RCT), curd-firming time, and curd firmness 30 min after rennet addition. Six concentrations of MWP (vol/vol; 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0%) were added to 3 bulk milk samples (collected and analyzed during 3 d), and a sample without MWP was used as control. Within each day of analysis, 6 replicates of MCP for each treatment were obtained, changing the position of the treatment in the rack. For control samples, 2 replicates per day were performed. In addition to MCP, WP fractions were measured on each treatment during the 3 d of analysis. Milk coagulation properties were measured on 144 samples by using a Formagraph (Foss Electric, Hillerød, Denmark). Increasing the amount of MWP added to milk led to a longer RCT. In particular, significant differences were found between RCT of the control samples (13.5 min) and RCT of samples with 3.0% (14.6 min) or more MWP. A similar trend was observed for curd-firming time, which was shortest in the control samples and longest in samples with 9.0% MWP (21.4 min). No significant differences were detected for curd firmness at 30 min across concentrations of MWP. Adjustments in cheese processing should be made when recycling MWP, in particular during the coagulation process, by prolonging the time of rennet activity before cutting the curd.  相似文献   

15.
The aim of this study was to investigate sources of variation of milk coagulation properties (MCP) of buffalo cows. Individual milk samples were collected from 200 animals in 5 herds located in northern Italy from January to March 2010. Rennet coagulation time (RCT, min) and curd firmness after 30 min from rennet addition (a30, mm) were measured using the Formagraph instrument (Foss Electric, Hillerød, Denmark). In addition to MCP, information on milk yield, fat, protein, and casein contents, pH, and somatic cell count (SCC) was available. Sources of variation of RCT and a30 were investigated using a linear model that included fixed effects of herd, days in milk (DIM), parity, fat content, casein content (only for a30), and pH. The coefficient of determination was 51% for RCT and 48% for a30. The most important sources of variation of MCP were the herd and pH effects, followed by DIM and fat content for RCT, and casein content for a30. The relevance of acidity in explaining the variation of both RCT and a30, and of casein content in explaining that of a30, confirmed previous studies on dairy cows. Although future research is needed to investigate the effect of these sources of variation on cheese yield, findings from the present study suggest that casein content and acidity may be used as indicator traits to improve technological properties of buffalo milk.  相似文献   

16.
The aim of the study was to quantify the effects of composite β- and κ-casein (CN) genotypes on genetic variation of milk coagulation properties (MCP); milk yield; fat, protein, and CN contents; somatic cell score; pH; and titratable acidity (TA) in 1,042 Italian Holstein-Friesian cows. Milk coagulation properties were defined as rennet coagulation time (RCT) and curd firmness (a30). Variance components were estimated using 2 animal models: model 1 included herd, days in milk, and parity as fixed effects and animal and residual as random effects, and model 2 was model 1 with the addition of composite β- and κ-CN genotype as a fixed effect. Genetic correlations between RCT and a30 and between these traits and milk production traits were obtained with bivariate analyses, based on the same models. The inclusion of casein genotypes led to a decrease of 47, 68, 18, and 23% in the genetic variance for RCT, a30, pH, and TA, respectively, and less than 6% for other traits. Heritability of RCT and a30 decreased from 0.248 to 0.143 and from 0.123 to 0.043, respectively. A moderate reduction was found for pH and TA, whereas negligible changes were detected for other milk traits. Estimates of genetic correlations were comparable between the 2 models. Results show that composite β- and κ-CN genotypes are important for RCT and a30 but cannot replace the recording of MCP themselves.  相似文献   

17.
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a30) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a30 with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h2) = 0.240 and h2 = 0.210 for HF and BS, respectively] than a30 (h2 = 0.148 and h2 = 0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h2 = 0.103 and h2 = 0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h2 = 0.108). A negative genetic correlation, lower than −0.85, was estimated between RCT and a30 for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP.  相似文献   

18.
The ultrafiltration (UF) of sheep milk is carried out in concentration mode in order to evaluate the variation of the rennet clotting properties of the concentrates as a function of the volumetric concentration factors up to a value of 2.0. The UF unit is equipped with 25.5 cm2 of membrane surface area. The cellulose acetate laboratory – made membrane has a molecular weight cut-off of 7000 Da. The evolution pattern of the rennet clotting properties of the skimmed sheep milk feed and UF retentates was assessed by the Optigraph. A significant increase on curd firmness and rate of curd firming was detected with the increase of the protein concentration, while RCT show a tendency to increase with milk protein content. The variation of curd firmness and rate of curd firming with the protein concentration was linear and correlations were established.  相似文献   

19.
The objective of this study was to estimate heritabilities and repeatabilities for milk coagulation traits [milk coagulation time (RCT) and curd firmness (E30)] and genetic and phenotypic correlations between milk yield and composition traits (milk fat percentage and protein percentage, urea, somatic cell count, pH) in first-lactation Estonian Holstein dairy cattle. A total of 17,577 test-day records from 4,191 Estonian Holstein cows in 73 herds across the country were collected during routine milk recordings. Measurements of RCT and E30 determined with the Optigraph (Ysebaert, Frepillon, France) are based on an optical signal in the near-infrared region. The cows had at least 3 measurements taken during the period from April 2005 to January 2009. Data were analyzed using a repeatability animal model. There was substantial variation in milk coagulation traits with a coefficient of variation of 27% for E30 and 9% for the log-transformed RCT. The percentage of variation explained by herd was 3% for E30 and 4% for RCT, suggesting that milk coagulation traits are not strongly affected by herd conditions (e.g., feeding). Heritability was 0.28 for RCT and 0.41 for E30, and repeatability estimates were 0.45 and 0.50, respectively. Genetic correlation between both milk coagulation traits was negligible, suggesting that RCT and E30 have genetically different foundations. Milk coagulation time had a moderately high positive genetic (0.69) and phenotypic (0.61) correlation with milk pH indicating that a high pH is related to a less favorable RCT. Curd firmness had a moderate positive genetic (0.48) and phenotypic (0.45) correlation with the protein percentage. Therefore, a high protein percentage is associated with favorable curd firmness. All reported genetic parameters were statistically significantly different from zero. Additional univariate random regression analysis for milk coagulation traits yielded slightly higher average heritabilities of 0.38 and 0.47 for RCT and E30 compared with the heritabilities of the repeatability model.  相似文献   

20.
The objectives of this study were to compare milk coagulation ability (MCA) and the prevalence of noncoagulation of milk within the main Finnish dairy breeds, Finnish Ayrshire (FA) and Holstein-Friesian (HOL), as well as to study the herd effect on MCA. Data used in the statistical analyses consisted of individual milk samples of 959 FA, 399 HOL, and 50 crossbred cows from 84 herds. Data were collected before the grazing season in the spring 1999. Milk samples were analyzed for the milk coagulation traits (milk renneting time, R and curd firmness, E(30)) and pH. In addition, information on the 305-d milk production traits from the year 1999, and background information about feeding and management regimes of the herds were obtained. Variance components for the random herd and animal effects were estimated using REML methodology and an animal model. Breed, parity, lactation stage (for R, E(30) and pH only), and a measuring unit (for R and E(30) only) were included as fixed effects in the model. When the effects of concentrate feeding frequency and type of concentrate were studied, the random effect of herd was excluded from the model. A relationship matrix included parents, grandparents, and great grandparents of the cows with observations. The HOL cows were superior to FA cows in MCA when both the proportion of poorly coagulating (PC) and noncoagulating (NC) milk, and the differences in curd firmness were considered. About 30% of the FA cows and 12% of the HOL cows produced PC milk. Only 1.3% of the HOL cows and 8.6% of the FA cows produced NC milk. Herd effect explained only a minor part of the variation in MCA (8%) compared with that in 305-d milk production traits (about 43%). Frequent feeding of the concentrate was associated with good MCA as well as for the high milk, protein and fat yields, but it was not associated with the prevalence of the NC milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号