首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This is a first report on the use of the bis(tricyclohexylphosphine)nickel (II) dichloride complex (abbreviated as NiPCy3) into MgH2 based hydrogen storage systems. Different composites were prepared by planetary ball-milling by doping MgH2 with (i) free tricyclohexylphosphine (PCy3) without or with nickel nanoparticles, (ii) different NiPCy3 contents (5–20 wt%) and (iii) nickel and iron nanoparticles with/without NiPCy3. The microstructural characterization of these composites before/after dehydrogenation was performed by TGA, XRD, NMR and SEM-EDX. Their hydrogen absorption/desorption kinetics were measured by TPD, DSC and PCT. All MgH2 composites showed much better dehydrogenation properties than the pure ball-milled MgH2. The hydrogen absorption/release kinetics of the Mg/MgH2 system were significantly enhanced by doping with only 5 wt% of NiPCy3 (0.42 wt% Ni); the mixture desorbed H2 starting at 220 °C and absorbed 6.2 wt% of H2 in 5 min at 200 °C under 30 bars of hydrogen. This remarkable storage performance was not preserved upon cycling due to the complex decomposition during the dehydrogenation process. The hydrogen storage properties of NiPCy3-MgH2 were improved and stabilized by the addition of Ni and Fe nanoparticles. The formed system released hydrogen at temperatures below 200 °C, absorbed 4 wt% of H2 in less than 5 min at 100 °C, and presented good reversible hydriding/dehydriding cycles. A study of the different storage systems leads to the conclusion that the NiPCy3 complex acts by restricting the crystal size growth of Mg/MgH2, catalyzing the H2 release, and homogeneously dispersing nickel over the Mg/MgH2 surface.  相似文献   

2.
Titanium suboxide (TiO) is one of the best catalysts which improved the hydrogen absorption-desorption property of MgH2 Mg system. The TiO catalyzed Mg MgH2 have shown a remarkably reduced apparent activation energy and enhanced the hydrogen absorption-desorption kinetics. The X-ray photoelectron spectroscopy (XPS) analysis has indicated that the oxidation state of Ti in TiO remains unchanged during ball milling and hydrogen absorption-desorption of TiO-doped-MgH2. The X-ray diffraction (XRD) analysis further confirms the XPS result. The TiO has shown the excellent catalytic effect on the MgMgH2 system which remarkably reduced the hydrogen absorption-desorption temperatures.  相似文献   

3.
Herein, we demonstrate the successful preparation of a novel complex transition metal oxide (TiVO3.5) by oxidizing a solid-solution MXene (Ti0.5V0.5)3C2 at 300 °C and its high activity as a catalyst precursor in the hydrogen storage reaction of MgH2. The prepared TiVO3.5 inherits the layered morphology of its MXene precursor, but the layer surface becomes very coarse because of the presence of numerous nanoparticles. Adding a minor amount of TiVO3.5 remarkably reduces the dehydrogenation and hydrogenation temperatures of MgH2 and enhances the reaction kinetics. The 10 wt% TiVO3.5-containing sample exhibits optimal hydrogen storage properties, as it desorbs approximately 5.0 wt% H2 in 10 min at 250 °C and re-absorbs 3.9 wt% H2 in 5 s at 100 °C and under 50 bar of hydrogen pressure. The apparent activation energy is calculated to be approximately 62.4 kJ/mol for the MgH2-10 wt% TiVO3.5 sample, representing a 59% reduction in comparison with pristine MgH2 (153.8 kJ/mol), which reasonably explains the remarkably reduced dehydrogenation operating temperature. Metallic Ti and V are detected after ball milling with MgH2; they are uniformly dispersed on the MgH2 matrix and act as actual catalytic species for the improvement of the hydrogen storage properties of MgH2.  相似文献   

4.
In order to improve the hydrogenation/dehydrogenation properties of the Mg/MgH2 system, the nickel hydride complex NiHCl(P(C6H11)3)2 has been added in different amounts to MgH2 by planetary ball milling. The hydrogen storage properties of the formed composites were studied by different thermal analyses methods (temperature programmed desorption, calorimetric and pressure-composition-temperature analyses). The optimal amount of the nickel complex precursor was found to be of 20 wt%. It allows to homogeneously disperse 1.8 wt% of nickel active species at the surface of the Mg/MgH2 particles. After the decomposition of the complex during MgH2 dehydrogenation, the formed composite is stable upon cycling at low temperature. It can release hydrogen at 200 °C and absorb 6.3 wt% of H2 at 100 °C in less than 1 h. The significantly enhanced H2 storage properties are due to the impact of the highly dispersed nickel on both the kinetics and thermodynamics of the Mg/MgH2 system. The hydrogenation and dehydrogenation enthalpies were found to be of −65 and 63 kJ/mol H2 respectively (±75 kJ/mol H2 for pure Mg/MgH2) and the calculated apparent activation energies of the hydrogen uptake and release processes are of 22 and 127 kJ/mol H2 respectively (88 and 176 kJ/mol H2 for pure Mg/MgH2). The change in the thermodynamics observed in the formed composite is likely to be due to the formation of a Mg0.992Ni0.008 phase during dehydrogenation/hydrogenation cycling. The impact of another hydride nickel precursor in which chloride has been replaced by a borohydride ligand, namely NiH(BH4)(P(C6H11)3)2, is also reported.  相似文献   

5.
Carbon aerogel (CA) microspheres with highly crumpled graphene–like sheets surface and network internal structure have been successfully prepared by an inverse emulsion polymerization routine, subsequently ball milled with Mg powder to fabricate Mg@CA. The Mg change into MgH2 phases, decorating on the surface of the CA forming MgH2@CA microspheres composite after the hydrogenation process at 400 °C. The MgH2@CA microspheres composite displays MgH2–CA shell–core structure and shows enhanced hydrogenation and dehydrogenation rates. It can quickly uptake 6.2 wt% H2 within 5 min at 275 °C and release 4.9 wt% H2 within 100 min at 350 °C, and the apparent activation energy for the dehydrogenation is decreased to 114.8 kJ mol?1. The enhanced sorption kinetics of the composite is attributed to the effects of the in situ formed MgH2 NPs during the hydrogenation process and the presence of CA. The nanosized MgH2 could reduce the hydrogen diffusion distance, and the CA provides the sites for nucleation and prevents the grains from agglomerating. This novel method of in situ producing MgH2 NPs on zero–dimensional architecture can offer a new horizon for obtaining high performance materials in the hydrogen energy storage field.  相似文献   

6.
Grignard reagents can provide a simple path to generate, through their thermal decomposition, magnesium (Mg) and/or its hydride (MgH2). However, existing compounds lack the ability to lead to “adequate” MgH2 structures to enable effective hydrogen storage. Herein, we report on the possibility to tune Grignard reagent's chemical structure, i.e. number of β-hydrogen, and the activation energy for their thermal decomposition to lead to Mg/MgH2. For example, di-tert-butylmagnesium with nine β-hydrogen was able to decompose at a very low temperature of 167 °C to generate MgH2/Mg, which is 100 °C lower than the temperature required to generate MgH2 from di-n-butylmagnesium, i.e. the only compound known to date. More remarkably, the MgH2 synthesized from the di-tert-butylmagnesium precursor was able to release hydrogen from 100 °C. These promising hydrogen storage properties are credited to the formation of the metastable γ-MgH2 phase, which is believed to result from the structural defects generated upon the thermal decomposition of di-tert-butylmagnesium.  相似文献   

7.
Study on the synergistic catalytic effect of the SrTiO3 and Ni on the improvement of the hydrogen storage properties of the MgH2 system has been carried out. The composites have been prepared using ball milling method and comparisons on the hydrogen storage properties of the MgH2 – Ni and MgH2 – SrTiO3 composites have been presented. The MgH2 – 10 wt% SrTiO3 – 5 wt% Ni composite is found to has a decomposition temperature of 260 °C with a total decomposition capacity of 6 wt% of hydrogen. The composite is able to absorb 6.1 wt% of hydrogen in 1.3 min (320 °C, 27 atm of hydrogen). At 150 °C, the composite is able to absorb 2.9 wt% of hydrogen in 10 min under the pressure of 27 atm of hydrogen. The composite has successfully released 6.1 wt% of hydrogen in 13.1 min with a total dehydrogenation of 6.6 wt% of hydrogen (320 °C). The apparent activation energy, Ea, for decomposition of SrTiO3-doped MgH2 reduced from 109.0 kJ/mol to 98.6 kJ/mol after the addition of 5 wt% Ni. The formation of Mg2Ni and Mg2NiH4 as the active species help to boost the performance of the hydrogen storage properties of the MgH2 system. Observation of the scanning electron microscopy images suggested the catalytic role of the SrTiO3 additive is based on the modification of composite microstructure.  相似文献   

8.
The catalytic effects of K2NbF7 on the hydrogen storage properties of MgH2 have been studied for the first time. MgH2 + 5 wt% K2NbF7 has reduced the onset dehydrogenation temperature to 255 °C, which is 75 °C lower than the as-milled MgH2. For the rehydrogenation kinetic, at 150 °C, MgH2 + 5 wt% K2NbF7 absorbs 4.7 wt% of hydrogen in 30 min whereas the as-milled MgH2 only absorbs 0.7 wt% of hydrogen under similar condition. For the dehydrogenation kinetic, at 320 °C, the MgH2 + 5 wt% K2NbF7 is able to release 5.2 wt% of hydrogen in 5.6 min as compared to 0.3 wt% by the as-milled MgH2 under similar condition. Comparatively, the Ea value of MgH2 + 5 wt% K2NbF7 is 96.3 kJ/mol, which is 39 kJ/mol lower compared to the as-milled MgH2. The MgF2, the KH and the Nb that are found after the heating process are believed to be the active species that have improved the system properties. It is concluded that the K2NbF7 is a good catalyst to improve the hydrogen storage properties of MgH2.  相似文献   

9.
Previous studies have shown that ferrites give a positive effect in improving the hydrogen sorption properties of magnesium hydride (MgH2). In this study, another ferrite, i.e., BaFe12O19, has been successfully synthesised via the solid state method, and it was milled with MgH2 to enhance the sorption kinetics. The result showed that the MgH2 + 10 wt% BaFe12O19 sample started to release hydrogen at about 270 °C which is about 70 °C lower than the as-milled MgH2. The doped sample was able to absorb hydrogen for 4.3 wt% in 10 min at 150 °C, while as-milled MgH2 only absorbed 3.5 wt% of hydrogen under similar conditions. The desorption kinetic results showed that the doped sample released about 3.5 wt% of hydrogen in 15 min at 320 °C, while the as-milled MgH2 only released about 1.5 wt% of hydrogen. From the Kissinger plot, the apparent activation energy of the BaFe12O19-doped MgH2 sample was 115 kJ/mol which was lower than the milled MgH2 (141 kJ/mol). Further analyses demonstrated that MgO, Fe and Ba or Ba-containing contribute to the improvement by serving as active species, thus enhancing the MgH2 for hydrogen storage.  相似文献   

10.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

11.
De/rehydrogenation kinetics and reversibility of MgH2 are improved by doping with activated carbon nanofibers (ACNF) and compositing with LiBH4. Via doping with 5 wt % ACNF, hydrogen absorption of Mg to MgH2 (T = 320 °C and p(H2) = 50 bar) increases from 0.3 to 4.5 wt % H2. Significant reduction of onset dehydrogenation temperature of MgH2 to 340 °C (ΔT = 70 °C as compared with pristine MgH2) together with 6.8–8.2 wt % H2 can be obtained by compositing Mg-5 wt. % ACNF with LiBH4 (LiBH4:Mg mole ratios of 0.5:1, 1:1, and 2:1). During dehydrogenation of Mg-rich composites (0.5:1 and 1:1 mol ratios), the formation of MgB2 and Mg0.816Li0.184 implying the reaction between LiBH4 and MgH2 favors kinetic properties and reversibility, while the composite with 2:1 mol ratio shows individual dehydrogenation of LiBH4 and MgH2. For up-scaling to hydrogen storage tank (~120 times greater sample weight than laboratory scale) of the most suitable composite (1:1 mol ratio), de/rehydrogenation kinetics and hydrogen content released at all positions of the tank are comparable and approach to those from laboratory scale. Due to high purity (100%) and temperature of hydrogen gas from hydride tank, the performance of single proton exchange membrane fuel cell enhances up to 30% with respect to the results from compressed gas tank.  相似文献   

12.
The stability of magnesium and its hydride (Mg/MgH2) against moisture and oxygen can be improved by forming a multilayered structure with a protective polymeric layer. Herein, we report for the first time the fabrication of such a multilayered structure via an electrochemical deposition method consisting of the successive depositions of Mg on electropolymerised polypyrrole (PPy) films. The thickness of the PPy and the Mg layers was ~1 μm, which is larger than the Mg/Pd multilayers prepared via physical deposition methods, owing to the higher surface roughness of electropolymerised films. However, such films displayed remarkable hydrogen storage properties. Hydrogenation of the PPy/Mg film was achieved at 100 °C and hydrogen release started from 125 °C with a peak at ~215 °C. When covered by a second PPy layer, the hydrogen desorption temperature increased slightly to 230 °C. These hydrogen absorption and desorption temperatures are significantly lower than that of pristine Mg/MgH2 micron sized powders and this was achieved without any additional catalyst. Furthermore, such hydrogenated PPy/Mg/PPy film structures were found to be stable in air even after one week.  相似文献   

13.
The effects of MnFe2O4 nanopowder synthesised via a simple ‘hydrothermal’ method on the hydrogen storage properties of MgH2 are investigated for the first time. The particle size of the as-synthesised MnFe2O4 nanoparticles is determined to be about 10 nm. We observe that MnFe2O4 catalyst decreases the decomposition temperature of MgH2 and enhances the sorption kinetics. Interestingly, the onset hydrogen desorption temperature of 10 wt% MnFe2O4-doped MgH2 sample gets lowered from 350 °C to 240 °C with faster kinetics, and the sample shows an average dehydrogenation rate 8–9 times faster than that of the as-milled MgH2 sample. By adding 10 wt% of as-prepared MnFe2O4 to MgH2, approximately 5.5 wt% hydrogen can be absorbed in 10 min at 200 °C. In contrast, the un-doped MgH2 sample absorbed only 4.0 wt% hydrogen in the same period of time. From the Kissinger analysis, the apparent activation energy for hydrogen released in the MnFe2O4-added MgH2 composite is found to be 108.42 kJ/mol, which is much lower than the activation energy for hydrogen released in the as-milled MgH2 (146.57 kJ/mol). It is believed that the in situ formed Fe particle and Mn-containing phases together play a synergistic role in remarkably improving MgH2 storage properties.  相似文献   

14.
MgH2-based nanocomposites were synthesized by high-energy reactive ball milling (RBM) of Mg powder with 0.5–5 mol% of various catalytic additives (nano-Ti, nano-TiO2, and Ti4Fe2Ox suboxide powders) in hydrogen. The additives were shown to facilitate hydrogenation of magnesium during RBM and substantially improve its hydrogen absorption-desorption kinetics. X-ray diffraction analysis showed the formation of nanocrystalline MgH2 and hydrogenation of nano-Ti and Ti4Fe2Ox. The possible reduction of TiO2 during RBM in hydrogen was not observed, which is in agreement with lower hydrogenation capacity of the corresponding composite, 5.7 wt% for Mg + 5 mol% nano-TiO2 compared to 6.5 wt% for Mg + 5 mol% nano-Ti. Hydrogen desorption from the as-prepared composites was studied by Thermal Desorption Spectroscopy (TDS) in vacuum. A significant lowering of the hydrogen desorption temperature of MgH2 by 30–90 °C in the presence of the additives is associated with lowering activation energy from 146 kJ/mol for nanosized MgH2 down to 74 and 67 kJ/mol for MgH2 modified with nano-TiO2 and Ti4Fe2O0.3 additives, respectively. After hydrogen desorption at 300–350 °C, these materials are able to absorb hydrogen even at room temperature. It is shown that nano-structuring and addition of Ti-based catalysts do not decrease thermodynamic stability of MgH2. The thermodynamic parameters, obtained from hydrogen desorption isotherms for the Mg–Ti4Fe2O0.3 nanocomposite, ΔHdes = 76 kJ/mol H2 and ΔSdes = 138 J/K·mol H2, correspond to the reported literature values for pure polycrystalline MgH2. Hydrogen absorption-desorption characteristics of the composites with nano-Ti remain stable during at least 25 cycles, while a gradual decay of the reversible hydrogen capacity occurred in the case of TiO2 and Ti4Fe2Ox additives. Cycling stability of Mg/Ti4Fe2Ox was substantially improved by introduction of 3 wt% graphite into the composite.  相似文献   

15.
The present investigation describes the hydrogen storage properties of MgH2 ball milled with different additives i.e. graphene templated rare earth metal (La and Ce) fluorides, CeF4 and LaF3. MgH2 ball milled with graphene templated CeF4 (MgH2:CeF4@Gr) has onset desorption temperature of 245 °C, which is 50 °C, 52 °C and 75 °C lower than MgH2 ball milled with LaF3 templated graphene, CeF4 and LaF3 respectively. CeF4@Gr also shows the superior effect amongst all additives during rehydrogenation where MgH2:CeF4@Gr absorbs 5.50 wt% within 2.50 min at 300 °C under 15 atm H2 pressure. Dual tuning effect, i.e. lowering of thermodynamic (62.77 kJ/mol H2: lower from 74 kJ/mol for pristine MgH2) and kinetics barrier (93.01 kJ/mol) has been observed for MgH2:CeF4@Gr. Additionally, MgH2 ball milled with CeF4@Gr shows good reversibility up to 24 cycles of de/rehydrogenation. The feasible working mechanism of CeF4@Gr as additive for MgH2 has been studied in detail with the help of Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction characterizations (XRD).  相似文献   

16.
In order to improve the hydrogen storage performance of MgH2, graphene and CeF3 co-catalyzed MgH2 (hereafter denoted as MgH2+CeF3@Gn) were prepared by wet method ball milling and hydriding, which is a simple and time-saving method. The effect of CeF3@Gn on the hydrogen storage behavior of MgH2 was investigated. The experimental results showed that co-addition of CeF3@Gn greatly decreased the hydrogen desorption/absorption temperature of MgH2, and remarkably improved the dehydriding/hydriding kinetics of MgH2. The onset hydrogen desorption temperature of Mg + CeF3@Gn is 232 °C,which is 86 °C lower than that of as-milled undoped MgH2, and its hydrogen desorption capacity reaches 6.77 wt%, which is 99% of its theoretical capacity (6.84 wt%). At 300 °C and 200 °C the maximum hydrogen desorption rates are 79.5 and 118 times faster than that of the as-milled undoped MgH2. Even at low temperature of 150 °C, the dedydrided sample (Mg + CeF3@Gn) also showed excellent hydrogen absorption kinetics, it can absorb 5.71 wt% hydrogen within 50 s, and its maximum hydrogen absorption rate reached 15.0 wt% H2/min, which is 1765 times faster than that of the undoped Mg. Moreover, no eminent degradation of hydrogen storage capacity occurred after 15 hydrogen desorption/absorption cycles. Mg + CeF3@Gn showed excellent hydrogen de/absorption kinetics because of the MgF2 and CeH2-3 that are formed in situ, and the synergic catalytic effect of these by-products and unique structure of Gn.  相似文献   

17.
Magnesium hydride (MgH2) is a very promising hydrogen storage material and it has been paid more and more attention on the application of supplying hydrogen on-board because the theoretical hydrogen yield is up to 1703 mL/g when it reacts with water. However, the hydrolysis reaction is inhibited rapidly by the passivation layer of Mg(OH)2 formed on the surface of MgH2. This paper reports that high purity MgH2 (~98.7 wt%) can be readily obtained by the process of hydriding combustion synthesis (HCS) and the hydrogen generation via hydrolysis of the as-prepared HCSed MgH2 can be dramatically enhanced by the addition of AlCl3 in hydrolysis solutions. An excellent kinetics of hydrogen generation of 1487 mL/g in 10 min and 1683 mL/g in 17 min at 303 K was achieved for the MgH2-0.5 M AlCl3 system, in which the theoretical hydrogen yield (1685 mL/g) of the HCSed product was nearly reached. The mechanism of the hydrolysis kinetics enhancement was demonstrated by the generation of a large amounts of H+ from the Al3+ hydrolysis and the pitting corrosion (Cl?) of the Mg(OH)2 layer wrapped on the surface of MgH2 even at a low temperature. In addition, the apparent activation energies for the MgH2 hydrolysis in the 0.1 M AlCl3 and 0.5 M AlCl3 solutions are decreased to 34.68 kJ/mol and 21.64 kJ/mol, respectively, being far superior to that of reported in deionized water (58.06 kJ/mol). The results suggest that MgH2 + AlCl3 system may be used as a promising hydrogen generation system in practical application of supplying hydrogen on-board.  相似文献   

18.
Magnesium surface dope with vanadium has been considered as one of the best material for the hydrogen storage application. Optimization of vanadium concentration doping is important to retain the hydrogen storage capacity above 6 wt %. Vanadocene, bis(η5-cyclopentadienyl) vanadium, with the formula V(C5H5)2, commonly abbreviated as Cp2V is considered as the best precursor for the vanadium to dope the optimized concentration of vanadium over the Mg surface. The vanadium doping over the magnesium has been studied by X-ray photoelectron spectroscopy (XPS) in details. The vanadium doped Mg has been found to be hydrogenated even at 0 °C under nominal hydrogen pressure (above plateau pressure). Besides, the dehydrogenation temperature was also found to be below 200 °C which is remarkable less as compared to pure magnesium, and comparable to the best catalysts for Mg-MgH2 system reported till date.  相似文献   

19.
Target improving the hydrogen sorption properties of Mg, core-shell structured Mg@TM (TM = Co, V) composites were synthesized via an approach combining arc plasma method and electroless plating. The core-shell structures with the MgH2 core and V or Co containing hydride shells for hydrogenated Mg@TM particles were observed through HAADF-STEM and HRTEM techniques. The measured hydrogenation enthalpy (ΔHabs = ?70.02 kJ/mol H2) and activation energy (Ea = 67.66 kJ/mol H2) of the ternary Mg@Co@V composite were lower than those of binary composites and the pure Mg powder. In addition, the onset dehydrogenation temperature for the hydrogenated ternary composite measured from DSC was 323 °C, about 60 °C lower than that of pure MgH2. On one hand, these improved properties can be attributed to the core-shell structure which may introduce more contacts between catalysts and Mg, thus providing more nucleation sites for hydrogen sorption. On the other hand, the co-effect of MgCo hydrides (Mg2CoH5&Mg3CoH5) acting as “hydrogen pump” and V2H accelerating the dissociation of H2 might also contribute to the improved hydrogen sorption properties of Mg.  相似文献   

20.
High dehydrogenation temperature and slow dehydrogenation kinetics impede the practical application of magnesium hydride (MgH2) serving as a potential hydrogen storage medium. In this paper, Fe–Ni catalyst modified three-dimensional graphene was added to MgH2 by ball milling to optimize the hydrogen storage performance, the impacts and mechanisms of which are systematically investigated based on the thermodynamic and kinetic analysis. The MgH2+10 wt%Fe–Ni@3DG composite system can absorb 6.35 wt% within 100 s (300 °C, 50 atm H2 pressure) and release 5.13 wt% within 500 s (300 °C, 0.5 atm H2 pressure). In addition, it can absorb 6.5 wt% and release 5.7 wt% within 10 min during 7 cycles, exhibiting excellent cycle stability without degradation. The absorption-desorption mechanism of MgH2 can be changed by the synergistic effects of the two catalyst materials, which significantly promotes the improvement of kinetic performance of dehydrogenation process and reduces the hydrogen desorption temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号