首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effects of chestnut flour and xanthan–guar gum blend–emulsifier DATEM mixture addition on macro- and microstructure of rice breads baked in conventional and infrared–microwave combination ovens were investigated by using the images obtained by a scanner and scanning electron microscopy (SEM). Pore area fraction, pore size distribution, and roundness values of pores were determined. The highest pore area fraction values were obtained in breads prepared by replacement of 46 % of rice flour with chestnut flour containing xanthan–guar gum blend–DATEM mixture and baked in an infrared–microwave combination oven. On the other hand, rice breads containing no additives or chestnut flour had the lowest pore area fraction values. Infrared–microwave combination baking increased both pore area fraction values and total number of pores. Infrared–microwave combination baking caused approximately 23–28 % increase in number of the small pores (0–5 mm2) in rice breads and 71 % increase in number of the large pores (>10 mm2) in chestnut–rice breads. The fiber content and larger starch granules of chestnut flour contributed towards the stabilization of gas bubbles resulting in better crumb structure. More homogenous pore distributions were observed when additives and an infrared–microwave combination oven were used. When microstructure of gluten-free breads was investigated, it was seen that starch granules in chestnut–rice breads baked in an infrared–microwave combination oven did not disintegrate completely.  相似文献   

2.
The effects of chestnut flour and a xanthan–guar gum blend–DATEM mixture on staling of gluten-free rice breads baked in conventional and infrared–microwave combination ovens were studied. Staling properties of the bread were assessed using mechanical compression (TA), differential scanning calorimetry, X-ray diffraction, and fourier transform infrared spectroscopy (FT-IR). Hardness, moisture loss, and retrogradation enthalpy values for all bread samples increased significantly during storage. FT-IR spectra showed that the integrated area of peaks around 1,041 and 1,150 cm?1 wave lengths, which are related to the structure of starch retrogradation, increased with storage time. The X-ray diffractograms of aged breads indicated a B-type structure with the appearance of peaks at around 17°, 19.5°, and 22°. An additional peak at 24° was observed in breads stored for longer periods. Higher values of hardness and lower moisture contents were obtained for breads baked in an infrared–microwave combination oven, but the use of infrared–microwave combination oven did not result in excessive hardness after storage. Retrogradation enthalpies and total crystallinity values of breads did not show significant differences with baking type.The replacement of rice flour with chestnut flour and addition of xanthan–guar gum blend–DATEM mixture in formulations significantly delayed staling of gluten-free breads by decreasing moisture loss, hardness, retrogradation enthalpy, and total mass crystallinity.  相似文献   

3.
The main objective of the study was to determine the effects of different baking ovens and different cake formulations on the degree of starch gelatinization during cake baking. Baking was performed in microwave, infrared–microwave combination, and conventional ovens. Starch gelatinization levels of fat free, 25% fat, and 25% Simplesse™-containing cake samples were examined using differential scanning calorimeter (DSC) and rapid visco analyzer (RVA). Both DSC and RVA results showed that increasing baking time increased gelatinization level for all baking types significantly. It was also found that the effect of fat content on starch gelatinization was different depending on the type of baking. Addition of fat reduced the degree of starch gelatinization in conventional baking. However, fat enhanced the gelatinization in microwave and infrared–microwave combination ovens. Usage of Simplesse™ as a fat replacer decreased the starch gelatinization in all types of baking significantly. There was insufficient starch gelatinization in microwave-baked cakes in which the degree of gelatinization ranged from 55% to 78% depending on formulation. On the other hand, it ranged from 85% to 93% in conventionally baked cakes. Combining infrared with microwaves increased degree of starch gelatinization (70–90%).  相似文献   

4.
The main objective of this study was to design gluten‐free breads containing chestnut and rice flour and xanthan–guar gum blend to be baked in infrared–microwave combination oven. Response surface methodology (RSM) was used to optimise gluten‐free bread formulations and processing conditions. Weight loss, firmness, specific volume and colour change of the breads were determined. Rice flour mixed with different proportions of chestnut flour and different emulsifier contents were used to prepare breads. The gluten‐free formulations were baked using different upper halogen lamp powers, microwave powers and baking time which were varied from 40% to 80%, 30% to 70% and 9 to 17 min, respectively. Gluten‐free breads and wheat breads baked in conventional oven were used for comparison. Breads containing 46.5% chestnut flour and 0.62% emulsifier and baked using 40% infrared and 30% microwave power for 9 min had statistically comparable quality with conventionally baked ones.  相似文献   

5.
Undesirable qualities of breads baked in nonconventional ovens have been observed by most researchers. The altered heat and mass transfer patterns and much shorter baking times associated with microwave radiation resulted in a crustless product with tougher, coarser, but less firm texture. Insufficient starch gelatinization, microwave-induced gluten changes, and rapidly generated gas and steam caused by the heating mode could be reasons for quality changes in the microwave-baked breads. Although breads baked in an electrical resistance oven did not brown, their interior characteristics and shelf-life were superior to those of products baked in a conventional oven. Bread with a superior keeping quality was obtained using an air impingement convection oven. The determination and explanation of the physical and biochemical changes that occur in products during baking in conventional versus nonconventional ovens are fruitful areas for future research.  相似文献   

6.
In this study, the effects of gums on macro and micro-structure of breads baked in different ovens (infrared (IR)-microwave combination and conventional) were investigated by the help of image and SEM analysis, respectively. The gums used were xanthan, guar, κ-carrageenan and xanthan-guar blend. The gums were added to the formulation at 0.5% concentration. As a control, no gum added formulations were used. Results of Image analysis demonstrated that xanthan-guar gum blend addition improved bread quality with increasing pore area fractions. It was seen that about 75% of the pores of control breads baked in infrared-microwave combination oven and about 63% of the pores of control breads baked in conventional oven had diameters of above 1000 μm. According to SEM analysis, pores in control breads baked in conventional oven were found to be smaller, and had spherical, oval-like shape as compared to the ones baked in IR-microwave combination oven. Moreover, more homogeneous closed-cell structure was observed for conventionally baked control breads. The pores of breads baked in IR-microwave combination oven were so close to each other which resulted in coalescence of the gas cells to form channels, then the pores were no longer spherical. The starch granules in conventionally baked breads were more distorted and seen as a continuous sheet of gelatinized starch. On the other hand, granular residues and continuous starch structure was observed together in IR-microwave combination heating.  相似文献   

7.
Staling of breads baked in different ovens (microwave, infrared-microwave combination and conventional) was investigated with the help of mechanical (compression measurements), physicochemical (DSC, X-ray, FTIR) and rheological (RVA) methods. The effect of xanthan-guar gum blend addition on bread staling was also studied. Xanthan-guar gum blend at 0.5% concentration was used in bread formulation. The gums were mixed at equal concentrations to obtain the blend. After baking, the staling parameters of breads were monitored over 5 days storage. During storage, it was seen that hardness, retrogradation enthalpies, setback viscosity, crystallinity values, and FTIR outputs related to starch retrogradation of bread samples increased, whereas FTIR outputs related to moisture content of samples decreased significantly with time. The hardness, retrogradation enthalpy, setback viscosity, and crystallinity values of microwave-baked samples were found to be highest among other heating modes. Using IR-microwave combination heating made it possible to produce breads with similar staling degrees as conventionally baked ones in terms of retrogradation enthalpy and FTIR outputs related to starch retrogradation. Addition of xanthan-guar gum blend decreased hardness, retrogradation enthalpy and total mass crystallinity values of bread samples showing that staling was delayed.  相似文献   

8.
Keskin SO  Sumnu G  Sahin S 《Die Nahrung》2004,48(2):156-160
In this study, the effects of different enzymes (alpha-amylase, xylanase, lipase, protease) on quality of breads baked in different ovens (microwave, halogen lamp-microwave combination and conventional oven) were investigated. It was also aimed to reduce the quality problems of breads baked in microwave ovens with the usage of enzymes. As a control, bread dough containing no enzyme was used. Specific volume, firmness and color of the breads were measured as quality parameters. All of the enzymes were found to be effective in reducing the initial firmness and increasing the specific volume of breads baked in microwave and halogen lamp-microwave combination ovens. However, in conventional baking, the effects of enzymes on crumb firmness were seen mostly during storage. The color of protease enzyme added breads were found to be significantly different from that of the no enzyme and the other enzyme added breads in the case of all type of ovens.  相似文献   

9.
Gluten-free products exhibit some undesirable features due to the absence of the gluten network. Effects of ingredient interactions and baking type on the food matrix have not clearly been explored. The objective of this study was to investigate the effect of ingredient and baking types on the quality characteristics of cake by using nuclear magnetic resonance (NMR) relaxometry. Carob bean flour containing gluten-free cakes formulated either with hydroxypropyl methylcellulose (HPMC) or whey protein were baked in both conventional and microwave–infrared combination ovens. Specific gravity of batters was measured and cakes were analyzed in terms of weight loss, hardness, and specific volume. Microstructure of cakes was investigated by scanning electron microscopy (SEM). NMR relaxometry was used to support the information about water retention, and water–food matrix interactions. Cakes baked in microwave–infrared (MW-IR) combination oven had some undesirable characteristics due to higher weight loss and insufficient gelatinization of starch which was supported by SEM results. Compartments of relaxation data also indicated two specific proton pools for MW-IR-baked samples, which represented gelatinized and ungelatinized parts of the cakes. Spin–spin relaxation times (T2) were found to be good indicators for explaining the physical state and distribution of water inside the samples, having Pearson correlation of 0.96, 0.86, and ??0.98 (p?<?0.05) between monoexponential T2 values and hardness, specific volume, and moisture, respectively.  相似文献   

10.
The effects of different gums on macro-structure of gluten-free rice cakes baked in conventional and infrared–microwave (IR–MW) combination ovens were investigated by using the images obtained by scanner and scanning electron microscopy in this study. The gum types used were xanthan, guar, locust bean, κ-carrageenan and xanthan–guar blend. Cake containing no gum was used as control. It was observed that both addition of different types of gums affected the pore area fraction and percent number of pores of the rice cakes. The highest pore area fraction was obtained in cakes containing xanthan and xanthan–guar blend. Cakes baked in IR–MW combination oven had higher porosity than those baked in conventional oven. Micro-structure of gluten-free rice cakes was also analyzed. According to these results, conventionally baked cakes showed more starch granule deformations. Both granular starch residues and deformed starch structure were observed together in cakes baked in IR–MW combination oven. All of the starch granules did not lose their identity and did not disintegrate completely.  相似文献   

11.
Effects of different amounts of gluten, fat, emulsifier, and dextrose on the quality of breads baked in the microwave oven were investigated. Response surface methodology was used to optimize the formulation of microwave baked breads. Firmness, specific volume, and weight loss of the breads were determined. Breads formulated with low gluten flour were softer and had higher volume. Volume of these breads can be comparable with the volume of conventionally baked breads. For breads formulated with flour containing low gluten, the increase in fat and emulsifier contents decreased the firmness and increased the specific volume of breads. Fat, emulsifier, and dextrose contents were found to be the significant factors to reduce the weight loss of microwave baked breads.  相似文献   

12.
Gluten is a major component of some cereals and is responsible for flour technological characteristics to make bakery products. However, gluten must be eliminated from the diet of celiac patients because its ingestion causes serious intestinal damage. The objectives of this study were to assess the effect of different flours and their mixtures on thermal and pasting properties of batters, and to study the quality parameters and staling rate of gluten-free breads. Starch gelatinization temperatures and enthalpies depended on batter composition. Soy flour addition had a higher effect on rice than on corn starch, indicating some differential interaction between starch and proteins. Inactive soy flour incorporation improved all bread quality parameters in both corn- and rice-based breads. Higher batter firmness of formulations with soy addition (extrusion force was doubled in rice/soy and rice/corn/soy batters with regard to rice and rice/corn batters) partially explained higher specific volume (rice breads: 1.98 cm3/g; rice/soy 90:10 2.51 cm3/g, corn/soy 90:10: 2.05 cm3/g, whereas corn/soy 80:20: 2.12 cm3/g), as these batters retained more air during proofing. The staling rate was decreased by soy flour incorporation on rice (staling rate of rice breads with 10% soy diminished 52%, and with 20% of soy addition, 77%, both regarding to 100% rice breads) and corn formulation (the staling rate of corn/soy 80:20 breads was 5.9% lower than corn/soy 90:10) because of the high water-holding capacity of soy proteins and the interactions established with amylopectin that could retard the retrogradation process. Breads made with rice, corn, and soy flours showed the best quality attributes: high volume, good crumb appearance, soft texture, and low staling rate.  相似文献   

13.
The effects of fermentation of whole polished rice grains on the physical properties of rice flour and the rheological characteristics of rice noodles were investigated. Natural fermentation had little effect on the crystalline structure of rice starch, as measured by X‐ray diffraction, but the ratio of the crystalline to the amorphous regions increased. The thermal properties of rice flours were determined using differential scanning calorimetry and a rapid viscosity analyser (RVA). The gelatinization temperature, Tp, and the RVA peak viscosity of rice flour decreased, while the gelatinization enthalpy, ΔH, increased after fermentation. The FTIR spectra of fermented and control rice flours were similar. Fermented rice starch granules had slight superficial corrosion when examined using scanning electron microscopy. Fermentation may thus change the amorphous region of the starch granule as well as the chemical components and thereby modify both physical properties of rice flour and rheological characteristics of rice noodles.  相似文献   

14.
We examined a method to produce bread from crystalline rice flour without using thickening agents such as gluten, polysaccharide thickening, and amorphous rice flour. Rice grains were pulverized by a jet mill to produce flour. Samples of rice flours of various particle size distributions were prepared by using a size shifter. The degree of starch damage and the dynamic viscoelasticity of rice batter were measured in this work. We also baked bread of the flour of each size distribution to study processability for making bread. The batter made by the pulverized flour of rice particle size ranging from 75 to 106 μm had the highest expansion ratio and a good processability for baking breads compared to other particle size batters. The rice bread with high expansion ratio was produced by controlling particle size of crystalline rice flour without using thickening agents.  相似文献   

15.
<正> 谷物中本身的酶活性取决于谷物种类、土壤组成和采收时的成熟度。它的种类及分布是为了适应自然需要,而非作为人类的膳食原料。然而,加入酶于焙烤制品中能够平衡谷物中因采收时酶的不稳定含量,从而保证恒定如一的焙烤特性。事实上,酶不单可提高产品的稳定性,也能延长焙烤制品的新鲜度、面团酥松性和降低面团粘性。  相似文献   

16.
In order to understand starch changes induced by baking process at different locations of a slice of sandwich bread, namely the top, center, and bottom locations, starch was isolated from crumbs baked at two heating rates ( 6.31 and 4.67 °C/min) and evaluated for their pasting properties, gelatinization parameters, and iodine complexing ability. Results showed that starch isolated from the bottom and the center crumbs baked at higher heating rate presented the significant higher final viscosity and higher setback than that isolated from crumbs baked at lower heating rate. Thermal analysis showed that starch isolated from the center crumb of the bread slice presented the lower enthalpy value of gelatinization, confirming that these samples underwent higher heat-moisture treatment during the baking process. After equilibration at 0.97 aw, the exposure to iodine vapor changed the X-ray diffraction intensity of starch samples. Polarized light microscopy showed that heating affects starch granule morphology due to the higher starch chain mobility and the higher granular swelling when breads were baked at lower heating rate.  相似文献   

17.
Normal and heat-treated barley, both as flour and waxy starch, were added at a concentration of 3% to a white wheat bread. The effect not only of selected additives, but also of laboratory- and industrial baking processes on stalling was evaluated. Laboratory baked breads with heat-treated barley flour differed from control breads with regard to water content, firmness and amylopectin retrogradation. The influence of water content on firmness increased with storage time. All laboratory baked breads with barley additives, except normal barley flour, were less firm after 7 days of storage as compared to the control although amylopectin retrogradation tended to increase. Improved water absorption, and consequently, increased water content and/or different water binding capacities of the flour/starch could explain these results. Industrial baking caused higher water losses, especially in breads containing additives, thus reducing the effects on amylopectin retrogradation and firmness.  相似文献   

18.
The effect of three different rice varieties with different starch shapes (Seolgaeng (SG), round starch structure; Samkwang (SK), polygonal starch structure and Boramchan (BRC), polygonal starch structure) on rice flour characteristics and gluten‐free bread baking quality was investigated. Rice flours were produced by dry milling and passed through a 200 mesh sieve. Electron microscopy revealed that the structure of SG grains, with round starch granules, possessed larger void spaces than SK and BRC, composed of polygonal starch granules. For this reason, SG grain had low grain hardness and consequently, it was milled to a fine flour with low damaged starch content. The thermo‐mechanical properties were determined by Mixolab, which revealed that SG was gelatinised rapidly and maintained high viscosity after gelatinisation. These characteristics gave SG flour the ability to build up bread structure without gluten. Specific volume and crumb hardness of gluten‐free rice breads made of SG, SK and BRC flours were 3.37, 3.11 and 2.12 mL g?1 and 2.61, 2.76 and 6.46 N, respectively. The SG flour with round starch structure is appropriate for making gluten‐free rice breads.  相似文献   

19.
To study the function of starch in cookie baking, starch was isolated from a cookie flour and from cookies baked with the flour. Viscograms of starches indicated no detectable changes caused by cookie processing. Swelling power, solubility, gelatinization temperature range and enzyme susceptibility were unchanged by cookie preparation. X-ray diffraction patterns of starch isolated from cookies showed a strong “A” pattern. The starch was not affected by the baking process. Differential scanning calorimetry showed no apparent differences in phase transition peaks. Starch-gluten breads produced were of similar volume and quality characteristics. It was concluded that a) starch granules remain in their native condition during cookie baking, b) starch does not form a continuous structure in cookies and c) retrogradation cannot occur during cookie storage.  相似文献   

20.
Rheological properties of dough and bread quality of frozen dough-bread containing 18.4% of hydroxypropylated (HTS), acetylated (ATS), and phosphorylated cross-linked (PTS) tapioca starch with different degrees of modification and 1.6% of dried powdered gluten were compared to the same amount of native tapioca starch (NTS) or wheat flour-bread. Doughs substituted with native or modified tapioca starches had the same mixing tolerance as 100% wheat flour. The dough was frozen and stored for 1 week at −18°C, and thawed (one freeze-cycle). The amount of freezable water in the dough substituted with native or modified tapioca starches was not significantly different from that of wheat flour. Frozen dough-bread substituted with highly modified HTS (degree of substitution; DS 0.09–0.11) retarded bread staling, while lowly modified HTS (DS 0.06–0.07) or ATS (DS 0.02–0.04), and PTS (0.004–0.020% phosphoryl content) substitution fastened bread staling as compared with frozen dough-bread baked from wheat flour. The breadcrumbs containing HTS and ATS felt tacky, whereas the bread containing PTS was dry feel. HTS and ATS swelled and collapsed easily during heating, while PTS was difficult to swell and disperse as compared with NTS, therefore the gelatinization properties seemed to affect the texture of bread. Breadcrumb containing HTS showed small firmness during storage, and highly modified HTS-h (DS 0.1) was the smallest. This means highly hydroxypropylated tapioca starch significantly retards bread staling. Staling properties and texture of frozen dough-bread with various tapioca starches were the same as conventional bread baked with the same amount of tapioca starches. These results suggest that a one freeze–thaw cycle and a 1-week frozen period do not change characteristics of starch, gelatinization and retrogradation properties as compared with the conventional method, and the highly modified HTS-h is prominent anti-staling food-stuff in frozen dough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号