首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.  相似文献   

2.
There has been a tremendous increase in the number of food products containing bioactive components with a health promoting or disease preventing effect. Bioactive food components can be divided into bioactive molecules and bioactive living cells (probiotics). Both bioactive molecules and bioactive living cells may benefit from encapsulation since many report low survival of bioactivity due to adverse effects of (i) processing and storage in the products that serve as vehicles and due to (ii) deleterious circumstances during transport through the gastrointestinal tract. For probiotics, it may even be mandatory to apply protection by encapsulation as the survival of probiotics in traditional products such as in dairy foods and powdered formulas is low. Encapsulation promotes not only viability but more importantly also protects the functionality, and may facilitate targeted release in specific parts of the gut. Different encapsulation approaches qualify for protection of bioactive food components. The most commonly applied technologies are emulsification, coacervation, spray drying, spray cooling, freeze drying, fluid bed coating and extrusion technologies, but also more expensive techniques such as liposome encapsulation, and cyclodextrin encapsulation are used. When targeted release is desired in combination with adequate protection in the product, it is essential to realize which processes in the human gut can be applied to facilitate targeted release. The majority of systems that have been used in the past were either sensitive to mechanical stress, pH, or transport time variations in the gut. More recent systems take advantages of the different enzyme concentrations associated with variations in the composition of the microbiota in different parts of the gut. The latter system should receive more attention in the food industry as it allows for precise release of bioactive food components. The principle of targeted release by enzymatic activity of the microbiota is compatible with many carbohydrates that are generally regarded as safe (GRAS).  相似文献   

3.
Nanotechnology for the Food and Bioprocessing Industries   总被引:1,自引:1,他引:0  
Several complex set of engineering and scientific challenges in the food and bioprocessing industries for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; and nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. We review the background about the potential of nanotechnology, provide an overview of the current and future applications of nanotechnology relevant to food and bioprocessing industry, and identify the societal implications for successful implementation of nanotechnology.  相似文献   

4.
Nanotechnology is becoming increasingly important for the food sector. Promising results and applications are already being developed in the areas of nutrient delivery systems through bioactive nanoencapsulation, biosensors to detect and quantify pathogens organic compounds, other chemicals and food composition alteration, and even edible film to preserve fruit or vegetables. This article reviews the application and the benefits of nanotechnology in different areas of food industry that include bioactive nanoencapsulation, edible thin film, packages and nanosensors. It is possible to conclude from the review that the nanotechnology advances increase the safety and quality of food and mainly decrease the time for pathogen detection.  相似文献   

5.
Exotic fruit consumption and processing is increasing worldwide due to the improvement in preservation techniques, transportation, marketing systems and consumer awareness of health benefits. The entire body of tropical exotic fruits is rich in bioactive compounds, such as phenolic constituents, carotenoids, vitamins and dietary fiber. However, the fruit processing industry deals with the large percentage of byproducts, such as peels, seeds and unused flesh, generated in the different steps of the processing chains. In most cases, the wasted byproducts can present similar or even higher contents of bioactive compounds than the final produce does. The aim of this review is to promote the production and processing of exotic fruits highlighting the possibility of the integral exploitation of byproducts rich in bioactive compounds. Amongst the possible uses for these compounds that can be found in the food industry are as antioxidants (avoiding browning and lipid oxidation and as functional food ingredients), antimicrobials, flavoring, colorants and texturizer additives. Finally, the importance of extraction techniques of bioactive compounds designated as food additives is also included.  相似文献   

6.
BackgroundBioactive compounds possess plenty of health benefits, but they are chemically unstable and susceptible to oxidative degradation. The application of pure bioactive compounds is also very limited in food and drug formulations due to their fast release, low solubility, and poor bioavailability. Encapsulation can preserve the bioactive compounds from environmental stresses, improve physicochemical functionalities, and enhance their health-promoting and anti-disease activities.Scope and approachMicro and nano-encapsulation based techniques and systems have great importance in food and pharmaceutical industries. This review highlights the recent advances in micro and nano-encapsulation of bioactive compounds. We comprehensively discussed the importance of encapsulation, the application of biopolymer-based carrier agents and lipid-based transporters with their functionalities, suitability of encapsulation techniques in micro and nano-encapsulation, as well as different forms of improved and novel micro and nano-encapsulate systems.Key findings and conclusionsBoth micro and nano-encapsulation have an extensive application, but nano-encapsulation can be a promising approach for encapsulation purposes. Maltodextrin in combination with gums or other polysaccharides or proteins can offer an advantageous formulation for the encapsulation of bioactive compounds by using encapsulation techniques. Electro-spinning and electro-spraying are promising technologies in micro and nano-encapsulation, while solid lipid nanoparticles and nanostructure lipid carriers are exposing themselves as the promising and new generation of lipid nano-carriers for bioactive compounds. Moreover, phytosome, nano-hydrogel, and nano-fiber are also efficient and novel nano-vehicles for bioactive compounds. Further studies are required for the improvement of existing encapsulate systems and exploring their application in food and gastrointestinal systems for industrial application.  相似文献   

7.
Many proteins possess functional attributes that make them suitable for the encapsulation of bioactive agents, such as nutraceuticals and pharmaceuticals. This article reviews the state of the art of protein‐based nanoencapsulation approaches. The physicochemical principles underlying the major techniques for the fabrication of nanoparticles, nanogels, and nanofibers from animal, botanical, and recombinant proteins are described. Protein modification approaches that can be used to extend their functionality in these nanocarrier systems are also described, including chemical, physical, and enzymatic treatments. The encapsulation, retention, protection, and release of bioactive agents in different protein‐based nanocarriers are discussed. Finally, some of the major challenges in the design and fabrication of protein‐based delivery systems are highlighted.  相似文献   

8.
ABSTRACT

Natural bioactive compounds isolated from several aromatic plants have been studied for centuries due to their unique characteristics that carry great importance in food, and pharmaceutical, and cosmetic industries. For instance, several beneficial activities have been attributed to some specific compounds found in Thymus such as anti-inflammatory, antioxidant, antimicrobial, and antiseptic properties. Moreover, these compounds are classified as Generally Recognized as Safe (GRAS) which means they can be used as an ingrident of may food producs. Conventional extraction processes of these compounds and their derived forms from thyme leaves are well established. Hoewever, they present some important drawbacks such as long extraction time, low yield, high solvent consumption and degradation thermolabile compounds. Therefore, innovative extraction techniques such as ultrasound, microwave, enzyme, ohmic and heat-assisted methods can be useful strategies to enhance the exytraction yield and to reduce processing temperature, extraction time, and energy and solvent consumption. Furthermore, bioaccessibility and bioavailability aspects of these bioactive compounds as well as their metabolic fates are crucial for developing novel functional foods. Additionally, immobilization methods to improve stability, solubility, and the overall bioavailability of these valuable compounds are necessary for their commercial applications. This review aims to give an overall perspective of innovative extraction techniques to extract the targeted compounds with anti-inflammatory and antimicrobial activities. Moreover, the bioaccessi-bility and bioavailability of these compounds before and after processing discussed. In addition, some of the most important characteristics of thyme and their derived products discussed in this paper.  相似文献   

9.
Andaliman (Zanthoxylum acanthopodium DC.) is a plant endemic to North Sumatera, Indonesia. It has been used as food ingredient because of its unique properties of its pericarp, such as its citrus-like aroma, warm peppery flavor, and its ability to induce a tingling sensation. However, the pericarp is easily degraded by environmental and processing conditions. Therefore, preservation techniques, such as encapsulation and drying, have been proposed to protect the flavor. Moreover, andaliman also has some potential biological activities related to its antimicrobial, antioxidant, and anti-inflammatory properties. Thus, this plant may have many health benefits and uses. This review discusses the flavor profiles and bioactive compounds of andaliman, in addition to its applications in the food industry as a flavoring ingredient.  相似文献   

10.
Today, spices are integral part of our food as they provide sensory attributes such as aroma, color, flavour and taste to food. Further their antimicrobial, antioxidant, pharmaceutical and nutritional properties are also well known. Since spices are seasonal so their availability can be extended year round by adopting different preservation techniques. Drying and extraction are most important methods for preservation and value addition to spices. There are different techniques for drying of spices with their own advantages and limitations. A novel, non-conventional technique for drying of spices is use of microwave radiation. This technique proved to be very rapid, and also provide a good quality product. Similarly, there are a number of non-conventional extraction methods in use that are all, in principle, solid–liquid extractions but which introduce some form of additional energy to the process in order to facilitate the transfer of analytes from sample to solvent. This paper reviews latest advances in the use of microwave energy for drying of spices and herbs. Also, the review describes the potential application of microwave energy for extraction of essential oil/bioactive components from spices and herbs and the advantages of microwave-assisted process over the other extraction processes generally employed for extraction. It also showcases some recent research results on microwave drying/extraction from spices and herbs.  相似文献   

11.
During gastrointestinal digestion or food processing of proteins, small peptides can be released and may act as regulatory compounds with hormone‐like activities. Numerous biologically active peptides (bioactive peptides) have been identified. Most bioactive peptides are derived from milk and dairy products, with the most common being angiotensin converting enzyme inhibitory peptides. Soybean protein and soybean derived peptides also play an important role in soybean physiological activities, particularly those related to the prevention of chronic diseases. However, the bioactive potential of soybean derived bioactive peptides is yet to be fully appreciated. After a general introduction of approaches and advances in bioactive peptides from food sources, this review focuses on bioactive peptides derived from soybean proteins and their physiological properties. Technological approaches to generate bioactive peptides, their isolation, purification, characterization, and quantification, and further application in food and drug design are also presented. Safety concerns, such as potential toxicity, allergenicity, and sensory aspect of these peptides are likewise discussed.  相似文献   

12.
Capsicum spp. fruit is one of the most produced vegetables around the world, and it is consumed both as fresh vegetable and as a spice like a food additive for their characteristic red color and, in many cases, its pungency. In addition to its economic importance, the bioactivity of some important compounds such as capsaicinoids and carotenoids has promoted its research. The use of Capsicum oleoresins has been increased due to its advantages comparing with the traditional dry spice. These include obtaining higher quality products with the desired content of bioactive and flavored substances. The wide diversity of extraction methods including water extraction, organic solvent extraction, microwave-assisted extraction, and ultrasound assisted extraction as well as supercritical fluid extraction among others are discussed in the present review. Moreover, pretreatments such as chemical treatments, osmotic dehydration, sun and oven drying, and freeze-drying commonly used before the extraction are also presented. Due to its importance, Capsicum oleoresins produced with “green” solvents and the improvement of fractional extraction techniques that allow to obtain separately the various bioactive fractions will continue under research for further development.  相似文献   

13.
BackgroundThe well-known correlation between diet and physiology demonstrates the great possibilities of food to maintain or improve our health, increasing the interest in finding new products with positive physiological effects. Nowadays, one of the top research areas in Food Science and Technology is the extraction and characterization of new natural ingredients with biological activity that can be further incorporated into a functional food, contributing to consumer's well-being. Furthermore, there is a high demand for effective encapsulation methodologies to preserve all the characteristics of bioactive compounds until the physiological action site is reached.Scope and approachIn this review, the relevance of developing standard approaches for the extraction of the highly diverse bioactive compounds was described, as it defines the suitability of the following steps of separation, identification and characterization. Special attention was also dedicated to the encapsulation techniques used on hydrophilic and/or lipophilic compounds (e.g., emulsification, coacervation, supercritical fluid, inclusion complexation, emulsification-solvent evaporation and nanoprecipitation).Key findings and conclusionsSome useful conclusions regarding the selection of the best extraction methodology (Soxhlet extraction, ultrasound-assisted extraction, supercritical fluid extraction, accelerated solvent extraction, or shake extraction) were achieved, considering important aspects such as cost, required technical skills, extract integrity, green chemistry principles, solvent type, sample size, pH, temperature and pressure. In addition, this comprehensive review allowed defining the best protective approach to solve the limitations related to the extremely low absorption and bioavailability of bioactive phytochemicals, overcoming problems related to their low solubility, poor stability, low permeability and metabolic processes in the GI tract.  相似文献   

14.
This comprehensive review points out the major developments on the recovery of bioactive compounds of olive by-products, intending innovative food applications and enhanced technological functions. Nutritional and sensorial factors influencing consumers' acceptance are also discussed. Besides being an economic burden for producers, olive oil by-products also represent a severe environmental problem. Simultaneously, these are rich in bioactive compounds, which are remarkable added-value ingredients for other industries. New applications have been focused in ameliorating the food nutritional profile, replacing or improving technological properties/functions of food additives, and extending food products shelf life. Eco-friendly food packaging is also a promissory application field. The improvement of nutritional functionality and sensory quality of enriched food is another challenging task. Despite the large chemical characterization of olive products and olive oil processing by-products, further research is still needed to fully understand the potential of this valuable raw material.Industrial relevanceHigh added-value ingredients can be obtained by recovering bioactive compounds from olive by-products. Those can be used by food industry to improve food product nutritional profile and/or with a technological functionality. This review presents food applications developed with ingredients and bioactive compounds derived from olive processing by-products. It aims to be useful for food industries and other agro-industrial stakeholders in order to encourage and expand the utilization of olive by-products in the development of innovative food products.  相似文献   

15.
The increasing demands for foods with fresh‐like characteristics, lower synthetic additive and preservative contents, and low environmental footprint, but still safe to consume, have guided researchers and industries toward the development of milder processing technologies and more eco‐friendly packaging solutions. As sustainability acquires an increasingly critical relevance in food packaging, bio‐based and/or biodegradable materials stand out as suitable alternatives to their synthetic counterparts. In this context, the use of nanoemulsions has represented a step forward for improving the performance of sustainable food packaging devices, especially for the successful incorporation of new compounds and functionalities into conventional films and coatings. This class of emulsions, featuring unique optical stability and rheological properties, has been developed to protect, encapsulate, and deliver hydrophobic bioactive and functional compounds, including natural preservatives (such as essential oils from plants), nutraceuticals, vitamins, colors, and flavors. This article presents the surfactants (including naturally occurring proteins and carbohydrates), dispersants, and oil‐soluble functional compounds used for designing food‐grade nanoemulsions intended for packaging applications. The improved kinetic stability, bioavailability, and optical transparency of nanoemulsions over conventional emulsions are discussed considering theoretical concepts and real experiments. Bottom‐up and top‐down approaches of nanoemulsion fabrication are described, including high‐energy (such as high‐pressure homogenizers, microfluidics, ultrasound, and high‐speed devices) and low‐energy methods (for instance, phase inversion and spontaneous emulsification). Finally, incorporation of nanoemulsions in biopolymer matrixes intended for food packaging applications is also addressed, considering current characterization techniques as well as their potential antimicrobial activity against foodborne pathogens.  相似文献   

16.
Extraction of bioactive compounds from plants is one of the most important research areas for pharmaceutical and food industries. Conventional extraction techniques are usually associated with longer extraction times, lower yields, more organic solvent consumption, and poor extraction efficiency. A novel extraction technique, ultrahigh pressure extraction, has been developed for the extraction of bioactive compounds from plants, in order to shorten the extraction time, decrease the solvent consumption, increase the extraction yields, and enhance the quality of extracts. The mild processing temperature of ultrahigh pressure extraction may lead to an enhanced extraction of thermolabile bioactive ingredients. A critical review is conducted to introduce the different aspects of ultrahigh pressure extraction of plants bioactive compounds, including principles and mechanisms, the important parameters influencing its performance, comparison of ultrahigh pressure extraction with other extraction techniques, advantages, and disadvantages. The future opportunities of ultrahigh pressure extraction are also discussed.  相似文献   

17.
BackgroundEntrepreneurs involved in the commercialization of natural products are currently displaying significant interests in herbal drugs, medicines, and natural product-based herbal products. A broad range of bioactive chemical compounds have been derived from medicinal plants, either in their pure form or as homogenous extracts. As these compounds have broad structural and functional diversities, they offer pharmaceutical companies numerous opportunities for the development of new drug leads. They also represent an excellent source of molecules for the production of food additives, functional foods, nutritional products, and nutraceuticals for the growing number of natural food companies.Scope and approachA number of bioactive compounds, including polyphenols, are present in high concentrations in plant species whereas a number of other important compounds such as saponin are present at very low levels. Several identification, extraction, and isolation techniques are currently used to extract bioactive compounds from plants. However, as these techniques are generally laborious and very expensive, there is an urgent need for new advanced techniques for identification, extraction, and isolation of plant bioactive compounds in quantities sufficient for their potential applications in various sectors.Key findings and conclusionsThe aim of this review is to collate and present information on the identification, extraction, and isolation of the most widely used bioactive compounds from selected commercial medicinal plants, thereby providing a useful resource for medicinal scientists and pharmaceutical and food-related industries seeking to generate high yields at low cost to meet market requirements.  相似文献   

18.
The use of bioactive compounds in different commercial sectors such as pharmaceutical, food and chemical industries signifies the need of the most appropriate and standard method to extract these active components from plant materials. Along with conventional methods, numerous new methods have been established but till now no single method is regarded as standard for extracting bioactive compounds from plants. The efficiencies of conventional and non-conventional extraction methods mostly depend on the critical input parameters; understanding the nature of plant matrix; chemistry of bioactive compounds and scientific expertise. This review is aimed to discuss different extraction techniques along with their basic mechanism for extracting bioactive compounds from medicinal plants.  相似文献   

19.
Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40–80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product.  相似文献   

20.
During the edible oil production process, massive amounts of by-products are generated each year that are not efficiently utilised, posing economic and environmental challenges. Under-utilised products derived from valuable oil-plants such as oil-extracted wheat germ, oil-extracted moringa seed, oil-extracted walnut and flaxseed meal will be increased, and new integration concepts will be required as soon as possible. These underutilised products can be rich sources of phenolic compounds and bioactive peptides with appropriate health-promoting properties such as anti-diabetic, antioxidant, anti-hypertensive, anti-inflammatory, anticancer and antibacterial properties, according to this review. The recovery of bioactive compounds from these by-products can go a long way toward ensuring a sustainable food supply. Current challenges and requirements for recovering bioactive peptides and phenolic compounds from underutilised products derived from valuable oil-plants as well as the relationship between their biological activity and structure are discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号