首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous report, we found that mutations at the mitochondrial genome integrity locus, MGI1, can convert Kluyveromyces lactis into a petite-positive yeast. In this report, we describe the isolation of the MGI1 gene and show that it encodes the beta-subunit of the mitochondrial F1-ATPase. The site of mutation in four independently isolated mgi1 alleles is at Arg435, which has changed to Gly in three cases and Ile in the fourth isolate. Disruption of MGI1 does not lead to the production of mitochondrial genome deletion mutants, indicating that an assembled F1 complex is needed for the "gain-of-function" phenotype found in mgi1 point mutants. The location of Arg435 in the beta-subunit, as deduced from the three-dimensional structure of the bovine F1-ATPase, together with mutational sites in the previously identified mgi2 and mgi5 alleles, suggests that interaction of the beta- and alpha- (MGI2) subunits with the gamma-subunit (MGI5) is likely to be affected by the mutations.  相似文献   

2.
The oligomycin sensitivity conferring protein (OSCP) is an essential subunit of the mitochondrial ATP synthase (F0F1) long regarded as being directly involved in the energetic coupling of proton transport to ATP synthesis. To gain insight into the function of OSCP, mutations were made in a highly conserved central region of the subunit, and the recombinant proteins were studied using several biochemical assays. Rat liver OSCP was expressed to high levels in Escherichia coli, solubilized from inclusion bodies, renatured, and purified to homogeneity. The recombinant protein was able to reconstitute oligomycin-sensitive ATPase activity to inner membrane vesicles depleted of F1 and OSCP, and bound to F1 with a stoichiometry of 1:1. A novel fluorescence anisotropy assay was developed to study the affinity of binding of F1 to OSCP, providing a Kd value of 51 +/- 11 nM. Two highly conserved, charged residues (E91 and R94) which lie within the central region of OSCP were mutated, and the recombinant proteins (E91Q, R94Q, and R94A) were purified to homogeneity and judged by CD spectroscopy to have structures similar to that of the wild-type protein. Both R94 mutants demonstrated little or no binding to F1, while the E91Q bound in a manner identical to that of wild-type OSCP. Significantly, all three mutant proteins were able to reconstitute F1 with membranes and to confer oligomycin sensitivity to the same extent as wild-type OSCP. These results demonstrate that a single tight binding site exists on isolated rat liver F1 for OSCP, and implicate arginine 94 as playing a critical role in this site. In addition, these results indicate that this tight binding site is not required for conferral of oligomycin sensitivity to the reconstituted F0F1 complex.  相似文献   

3.
Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.  相似文献   

4.
F1-ATPase assembly has been studied in human rho degrees cells devoid of mitochondrial DNA (mtDNA). Since, in these cells, oxidative phosphorylation cannot provide ATP, their growth relies on glycolysis. Despite the absence of the mtDNA-coded F0 subunits 6 and 8, rho degrees cells possessed normal levels of F1-ATPase alpha and beta subunits. This F1-ATPase was functional and azide- or aurovertin-sensitive but oligomycin-insensitive. In addition, aurovertin decreased cell growth in rho degrees cells and also reduced their mitochondrial membrane potential, as measured by rhodamine 123 fluorescence. Therefore, a functional F1-ATPase was important to maintain the mitochondrial membrane potential and the growth of these rho degrees cells. Bongkrekic acid, a specific adenine nucleotide translocator (ANT) inhibitor, also reduced rho degrees cell growth and mitochondrial membrane potential. In conclusion, rho degrees cells need both a functional F1-ATPase and a functional ANT to maintain their mitochondrial membrane potential, which is necessary for their growth. ATP hydrolysis catalyzed by F1 must provide ADP3- at a sufficient rate to maintain a rapid exchange with the glycolytic ATP4- by ANT, this electrogenic exchange inducing a mitochondrial membrane potential efficient enough to sustain cell growth. However, since the effects of bongkrekic acid and of aurovertin were additive, other electrogenic pumps should cooperate with this pathway.  相似文献   

5.
Diamide treatment of the F0F1-ATP synthase in "inside out" submitochondrial particles (ESMP) in the absence of a respiratory Delta mu H+ as well as of isolated Fo reconstituted with F1 or F1-gamma subunit results in direct disulfide cross-linking between cysteine 197 in the carboxy-terminal region of the F0I-PVP(b) subunit and cysteine 91 at the carboxyl end of a small alpha-helix of subunit F1-gamma, both located in the stalk. The F0I-PVP(b) and F1-gamma cross-linking cause dramatic enhancement of oligomycin-sensitive decay of Delta mu H+. In ESMP and MgATP particles the cross-linking is accompanied by decoupling of respiratory ATP synthesis. These effects are consistent with the view that F0I-PVP(b) and F1-gamma are components of the stator and rotor of the proposed rotary motor, respectively. The fact that the carboxy-terminal region of F0I-PVP(b) and the short alpha-helix of F1-gamma can form a direct disulfide bridge shows that these two protein domains are, at least in the resting state of the enzyme, in direct contact. In isolated F0, diamide also induces cross-linking of OSCP with another subunit of F0, but this has no significant effect on proton conduction. When ESMP are treated with diamide in the presence of Delta mu H+ generated by respiration, neither cross-linking between F0I-PVP(b) and F1-gamma subunits nor the associated effects on proton conduction and ATP synthesis is observed. Cross-linking is restored in respiring ESMP by Delta mu H+ collapsing agents as well as by DCCD or oligomycin. These observations indicate that the torque generated by Delta mu H+ decay through Fo induces a relative motion and/or a separation of the F0I-PVP(b) subunit and F1-gamma which places the single cysteine residues, present in each of the two subunits, at a distance at which they cannot be engaged in disulfide bridging.  相似文献   

6.
The subunits forming the mitochondrial oxidative phosphorylation system are coded by both nuclear and mitochondrial genes. Recently, we attempted to introduce mtDNA from non-human apes into a human cell line lacking mtDNA (rho degrees), and succeeded in producing human-common chimpanzee, human-pigmy chimpanzee, and human-gorilla xenomitochondrial cybrids (HXC). Here, we present a comprehensive characterization of oxidative phosphorylation function in these cells. Mitochondrial complexes II, III, IV, and V had activities indistinguishable from parental human or non-human primate cells. In contrast, a complex I deficiency was observed in all HXC. Kinetic studies of complex I using decylubiquinone or NADH as limiting substrates showed that the Vmax was decreased in HXC by approximately 40%, and the Km for the NADH was significantly increased (3-fold, p < 0.001). Rotenone inhibition studies of intact cell respiration and pyruvate-malate oxidation in permeabilized cells showed that 3 nM rotenone produced a mild effect in control cells (0-10% inhibition) but produced a marked inhibition of HXC respiration (50-75%). Immunoblotting analyses of three subunits of complex I (ND1, 75 and 49 kDa) showed that their relative amounts were not significantly altered in HXC cells. These results establish HXC as cellular models of complex I deficiency in humans and underscore the importance of nuclear and mitochondrial genomes co-evolution in optimizing oxidative phosphorylation function.  相似文献   

7.
Seven out of the 13 proteins encoded by the mitochondrial genome of mammals (peptides ND1 to ND6 plus ND4L) are subunits of the respiratory NADH-ubiquinone oxidoreductase (complex I). The function of these ND subunits is still poorly understood. We have used the NADH-ubiquinone oxidoreductase of Rhodobacter capsulatus as a model for the study of the function of these proteins. In this bacterium, the 14 genes encoding the NADH-ubiquinone oxidoreductase are clustered in the nuo operon. We report here on the biochemical and spectroscopic characterization of mutants individually disrupted in five nuo genes, equivalent to mitochondrial genes nd1, nd2, nd5, nd6 and nd4L. Disruption of any of these genes in R. capsulatus leads to the suppression of NADH dehydrogenase activity at the level of the bacterial membranes and to the disappearance of complex I-associated iron-sulphur clusters. Individual NUO subunits can still be immunodetected in the membranes of these mutants, but they do not form a functional subcomplex. In contrast to these observations, disruption of two ORFs (orf6 and orf7), also present in the distal part of the nuo operon, does not suppress NADH dehydrogenase activity or complex I-associated EPR signals, thus demonstrating that these ORFs are not essential for the biosynthesis of complex I.  相似文献   

8.
Cytoplasmic dynein is a multisubunit, microtubule-associated, mechanochemical enzyme that has been identified as a retrograde transporter of various membranous organelles. Dynactin, an additional multisubunit complex, is required for efficient dynein-mediated transport of vesicles in vitro. Recently, we showed that three genes defined by a group of phenotypically identical mutants of the filamentous fungus Neurospora crassa encode proteins that are apparent subunits of either cytoplasmic dynein or dynactin. These mutants, designated ropy (ro), display abnormal hyphal growth and are defective in nuclear distribution. We propose that mutations in other genes encoding dynein/dynactin subunits are likely to result in a ropy phenotype and have devised a genetic screen for the isolation of additional ro mutants. Cytoplasmic dynein/dynactin is the largest and most complex of the cytoplasmic motor proteins, and the genetic system described here is unique in its potentiality for identifying mutations in undefined genes encoding dynein/dynactin subunits or regulators. We used this screen to isolate > 1000 ro mutants, which were found to define 23 complementation groups. Unexpectedly, interallelic complementation was observed with some allele pairs of ro-1 and ro-3, which are predicted to encode the largest subunits of cytoplasmic dynein and dynactin, respectively. The results suggest that the Ro1 and Ro3 polypeptides may consist of multiple, functionally independent domains. In addition, approximately 10% of all newly isolated ro mutantsdisplay unlinked noncomplementation with two or more of the mutants that define the 23 complementation groups. The frequent appearance of ro mutants showing noncomplementation with multiple ro mutants having unlinked mutations suggests that nuclear distribution in filamentous fungi is a process that is easily disrupted by affecting either dosage or activity of cytoplasmic dynein, dynactin, and perhaps other cytoskeletal proteins or regulators.  相似文献   

9.
10.
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.  相似文献   

11.
12.
Defects of the respiratory chain carrying out oxidative phosphorylation (OXPHOS) are the biochemical hallmark of human mitochondrial disorders. Faulty OXPHOS can be due to mutations in either nuclear or mitochondrial genes, that are involved in the synthesis of individual respiratory subunits or in their post-translational control. The most common mitochondrial disorder of infancy and childhood is Leigh's syndrome, a severe encephalopathy, often associated with a defect of cytochrome c oxidase (COX). In order to demonstrate which genome is primarily involved in COX-deficient (COX(-))-Leigh's syndrome, we generated two lines of transmitochondrial cybrids. The first was obtained by fusing nuclear DNA-less cytoplasts derived from normal fibroblasts, with mitochondrial DNA-less (rho degree) transformant fibroblasts derived from a patient with COX(-))-Leigh's syndrome. The second cybrid line was obtained by fusing rho degree cells derived from 143B.TK- human osteosarcoma cells, with cytoplasts derived from the same patient. The first cybrid line showed a specific and severe COX(-) phenotype, while in the second all the respiratory chain complexes, including COX, were normal. These results indicate that the COX defect in our patient is due to a mutation of a nuclear gene. The use of cybrids obtained from 'customized', patient-derived rho degree cells can have wide applications in the identification of respiratory chain defects originated by nuclear DNA-encoded mutations, and in the study of nuclear DNA-mitochondrial DNA interactions.  相似文献   

13.
In Alcaligenes eutrophus H16 the hyp gene complex consists of six open reading frames hypA1, B1, F1, C, D and E whose products are involved in maturation of the two NiFe hydrogenases: an NAD-reducing cytoplasmic enzyme (SH) and a membrane-bound electron-transport-coupled protein (MBH). hypB1 and hypF1 were originally considered to form a single open reading frame designated hypB [Dernedde, J., Eitinger, M. & Friedrich, B. (1993) Arch. Microbiol. 159, 545-553]. Re-examination of the relevant sequence identified hypB1 and hypF1 as two distinct genes. Non-polar in-frame deletions in the individual hyp genes were constructed in vitro and transferred via gene replacement to the wild-type strain. The resulting mutants fall into two classes. Deletions in hypC, D and E (class I) gave a clear negative phenotype, while hypA1, B1 and F1 deletion mutants (class II) were not impaired in hydrogen metabolism. Class I mutants were unable to grow on hydrogen under autotrophic conditions. The enzymatic activities of SH and MBH were disrupted in all three class I mutants. Immunoblot analysis showed the presence of the H2-activating SH subunit (HoxH) at levels comparable to those observed in the wild-type strain whereas the other three subunits (HoxF, U and Y) were only detectable in trace amounts, probably due to proteolytic degradation. Likewise, MBH was less stable in hypC, D and E deletion mutants and was not attached to the cytoplasmic membrane. In the wild-type strain, HoxH and the MBH large subunit (HoxG) undergo C-terminal proteolytic processing before attaining enzymatic activity. In class I mutants this maturation was blocked. 63Ni-incorporation experiments identified both hydrogenases as nickel-free apoproteins in these mutants. Although class II mutants bearing deletions in hypA1, B1 and F1 showed no alteration of the wild-type phenotype, a role for these genes in the incorporation of nickel and hence hydrogenase maturation cannot be excluded, since there is experimental evidence that this set of genes is duplicated in A. eutrophus.  相似文献   

14.
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.  相似文献   

15.
gamma-Aminobutyric acid type C (GABAC) receptors identified in retina appear to be composed of GABA rho subunits. The purpose of this study was to localize signals for homooligomeric assembly of rho1 subunits and to investigate whether the same region contained signals for heterooligomeric interaction with rho2 subunits. In vitro translated human rho1 was shown to be membrane-associated, and proteinase K susceptibility studies indicated that the N terminus was oriented in the lumen of ER-derived microsomal vesicles. This orientation suggested the involvement of the N terminus of rho1 in the initial steps of subunit assembly. To test this hypothesis, mutants were created containing only N-terminal sequences (N-rho1) or C-terminal sequences (C-rho1) of rho1. Co-immunoprecipitation studies revealed that N-rho1, but not C-rho1, interacted with rho1 in vitro. When coexpressed in Xenopus oocytes, N-rho1 interfered with rho1 receptor formation. Together, these data suggested that signals for rho1 homooligomeric assembly reside in the N-terminal half of the subunit. Sequential immunoprecipitations were then performed upon cotranslated rho1 and rho2 subunits which demonstrated that rho1 and rho2 interacted in vitro. Co-immunoprecipitation indicated that N-rho1 specifically associated with rho2. Therefore, the N-terminal regions of rho subunits contain the initial signals for both homooligomeric and heterooligomeric assembly into receptors with GABAC properties.  相似文献   

16.
A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18a delta and rps18b delta null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18a delta then rps18b delta. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.  相似文献   

17.
Chlorophyll--binding protein CP43 and cytochrome b559, encoded by psbC and psbE/F genes, are the components of photosystem II (PS II). Three psbC- and four psbE/F- mutants were isolated from the collection of PS II-deficient mutants of the cyanobacterium Synechocystis sp. 6803. Restoration of photosynthetic activity was achieved by transformation of psbE/F- mutants with cloned psbE/F gene cluster from wild type cells and each of psbC- mutants--with specific part of wild type psbC gene. DNA fragments carrying the mutations were isolated from mutant cells and sequenced. The mutations which affect PS II activity were identified in psbC gene as "frameshift" mutation, stop-codon formation, or as deletion of three nucleotides resulting in loss of one of three Phe residues in position 422-424 of CP43. Sequence of mutant psbE/F genes revealed single mutations resulting in deletion of Phe-36 or substitution of Pro-63 for Leu in alpha-subunit and Val-29 for Phe in beta-subunit of cytochrome b559.  相似文献   

18.
Leigh disease associated with cytochrome c oxidase deficiency (LD[COX-]) is one of the most common disorders of the mitochondrial respiratory chain, in infancy and childhood. No mutations in any of the genes encoding the COX-protein subunits have been identified in LD(COX-) patients. Using complementation assays based on the fusion of LD(COX-) cell lines with several rodent/human rho0 hybrids, we demonstrated that the COX phenotype was rescued by the presence of a normal human chromosome 9. Linkage analysis restricted the disease locus to the subtelomeric region of chromosome 9q, within the 7-cM interval between markers D9S1847 and D9S1826. Candidate genes within this region include SURF-1, the yeast homologue (SHY-1) of which encodes a mitochondrial protein necessary for the maintenance of COX activity and respiration. Sequence analysis of SURF-1 revealed mutations in numerous DNA samples from LD(COX-) patients, indicating that this gene is responsible for the major complementation group in this important mitochondrial disorder.  相似文献   

19.
Using the technique of blue native gel electrophoresis, the oligomeric state of the yeast mitochondrial F1F0-ATP synthase was analysed. Solubilization of mitochondrial membranes with low detergent to protein ratios led to the identification of the dimeric state of the ATP synthase. Analysis of the subunit composition of the dimer, in comparison with the monomer, revealed the presence of three additional small proteins. These dimer-specific subunits of the ATP synthase were identified as the recently described subunit e/Tim11 (Su e/Tim11), the putative subunit g homolog (Su g) and a new component termed subunit k (Su k). Although, as shown here, these three proteins are not required for the formation of enzymatically active ATP synthase, Su e/Tim11 and Su g are essential for the formation of the dimeric state. Su e/Tim11 appears to play a central role in this dimerization process. The dimer-specific subunits are associated with the membrane bound F0-sector. The F0-sector may thereby be involved in the dimerization of two monomeric F1F0-ATP synthase complexes. We speculate that the F1F0-ATP synthase of yeast, like the other complexes of oxidative phosphorylation, form supracomplexes to optimize transduction of energy and to enhance the stability of the complex in the membrane.  相似文献   

20.
Patch-clamp techniques were used to characterize the channel activity of mitochondrial inner membranes of two human osteosarcoma cell lines: a mitochondrial genome-deficient (rho0) line and its corresponding parental (rho+) line. Previously, two high conductance channels, mitochondrial Centum picoSiemen (mCS) and multiple conductance channels (MCC), were detected in murine mitochondria. While MCC was assigned to the protein import in yeast mitochondria, the role of mCS is unknown. This study demonstrates that mCs and MCC activities from mouse mitochondria are indistinguishable from those of human mitochondria. The channel activities and their functional expression levels are not altered in cells lacking mtDNA. Hence, rho0 cells may provide a model system for elucidating the role of mitochondrial channels in disease processes and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号