首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oil-film-lubricated mechanical face seal is a kind of pure hydrodynamic lubricated noncontacting mechanical face seal with zero leakage. On the basis of systematic theoretical analyses, the design calculation formulas under zero-leakage condition for mechanical face seals with different spiral groove patterns, including double-row spiral grooves such as splay pattern and single-row spiral grooves, are derived. The effects of groove geometry including number of grooves, balance ratio, spring force, rotating speed, and differential pressure on the seal performance are discussed in detail. Finally, the design guidelines of this kind of seal with zero leakage and no wear are put forward. The seals designed according to the guidelines can withstand the pressure disturbance and speed change by means of a slight change of oil-film thickness. Seals developed according to the design guidelines have been tested on a test rig in detail and applied successfully in high-speed turbocompressors of the oil refinery and petrochemical industries.  相似文献   

2.
推导了大型水泵油润滑导轴承梳齿迷宫密封泄漏量计算公式。通过实例计算了梳齿迷宫密封的泄漏量及各密封段的压降,分析了各段对密封效果的影响。比较了梳齿迷宫密封与端面密封的密封效果,分析了油润滑导轴承浸水的可能原因,指出了梳齿迷宫密封的适用性。结果表明:在水泵导轴承梳齿迷宫密封中O形密封圈的磨损量对泄漏量影响很大,O形密封圈必须选用耐磨性能好的材料,并控制泵轴摆度以减小O形密封圈的磨损量;在正常运行情况下梳齿迷宫密封的泄漏量远大于端面密封,因此要保证足够的排漏水能力,以免因排漏水不畅造成导轴承浸水。  相似文献   

3.
在液压缸中,往复动密封圈表面接触应力是决定其密封有效性的关键,但由于在工作过程中对往复密封表面接触状态进行监测的难度很大,因此对其变化规律仍缺乏深入了解。针对这一问题,以液压缸活塞杆Y形密封圈为对象,通过有限元仿真分析密封圈内唇磨损对密封圈表面接触应力的影响,确定密封圈表面接触应力的最佳监测部位;采用光纤光栅传感器(FBG)进行密封槽表面接触应力监测试验,通过铺设于密封槽的FBG传感器采集应力数据,得出密封圈周向和轴向接触应力均随内唇磨损增加呈现先增大后减小的趋势,与仿真结果一致;接触应力对密封磨损程度变化的响应灵敏度会随密封压力的增加而增大。研究结果为液压缸实际运行过程中往复动密封状态的监测提供了依据。  相似文献   

4.
新型组合槽端面干气密封特性研究   总被引:1,自引:0,他引:1  
为了进一步提升干气密封端面流体膜动压效应,提出一种新型组合槽端面干气密封,该组合槽由两个相邻的螺旋槽周向部分重叠组合而成,包括一个长螺旋槽,一个短螺旋槽,两槽的槽深及径向长度不同。建立该组合槽与传统槽端面密封的数学模型,并运用有限差分法对其密封性能进行数值分析。结果表明:新型组合槽在端面间隙约小于1.5μm区域,流体膜开启力大于传统槽,且间隙越小,两者差值越大;泄漏量亦大于传统槽,但其值远小于泄漏量的设计值;在端面间隙约小于3.5μm区域,新型组合槽流体膜刚度显著大于传统槽,且间隙越小,两者差值越大。鉴于组合槽在泄漏量不超标的情况下,在间隙较小时端面流体膜具有更大的刚度、开启力及刚漏比,其综合性能显著优于传统槽型密封。  相似文献   

5.
《Wear》1999,224(2):175-182
Radial lip seals made from PTFE-compounds are used more and more frequently for the sealing of crank shafts in the automotive industry. Due to wear the seal loses material and finally fails. State-of-the-art is the experimental determination of the tribological behaviour on a test rig with pin-on-disc apparatus with the help of which the wear behaviour of sealing systems, especially of PTFE seals, can be predicted. Because of the non-linear elasto-viscoplastic material properties of the sealing material the history-dependent seal mounting process has to be followed in the finite element analysis (FEA). A new FEA procedure is presented which can meet these demands. It is based on a modified iterative `rezoning' procedure. Under the assumption that the lip wears out according to the magnitude of the contact stress (maximum wear at maximum contact stress) the node coordinates of the seal contact surface are modified according to the node contact forces. Comparisons between numerical simulations and long-term service seals are made. The experiments also indicate under which radial load the seal can withstand insufficient lubrication which occurs in practical use without much wear.  相似文献   

6.
The paper presents the results of study of the factors affecting the wear rate in groove seal components used for crude oil centrifugal pumps. A test technique is proposed for the groove seal components that forecasts their wear resistance in specified conditions.  相似文献   

7.
密封端面微间隙液膜特性是上游泵送机械密封性能研究的关键。采用Pro/E wildfire软件建立参数化螺旋槽上游泵送机械密封端面微间隙液膜几何模型,以清水为工作介质,使用Fluent软件,对跨尺度密封端面微间隙流场进行三维数值模拟,得到开启力及压力分布规律,并与有关测试结果进行对比分析,实验数据与模拟数值基本吻合,表明所采用的模拟方案可对螺旋槽上游泵送机械密封微间隙三维流场进行较好地描述,该方法可用于密封端面微间隙流场及性能的系统研究;对端面压强分布进行分析,结果表明,在螺旋槽外槽根处存在最大静压,液膜开启力的增大主要来源于槽根产生的最大静压。  相似文献   

8.
An analysis for the laminar/turbulent flow in high pressure oil ring seals is presented. A fully-developed bulk-flow model for low axial Reynolds numbers is introduced to predict the static and dynamic force response of multi-land oil seals. The model includes the effects of bearing surface roughness, variable seal clearances, fluid inertia and viscous loss effects at the inlet of the first land in a multi-land oil seal. Internal groove pressures in the seals are determined via a mass conservation algorithm with Reynolds condition at the cavitation inception zone. Predictions show that the viscosity effect at the seal inlet is minimal for turbulent flow across the seal. However, for laminar oil seals, the entrance loss viscous effect can substantially increase the direct stiffness. Load capacity and rotordynamic force coefficients for one-land, two-land and three-land seal examples are discussed in detail.  相似文献   

9.
提出一种密封入口周向均匀设置有涡流槽的新型密封结构,建立了传统迷宫密封与新型涡流槽密封泄漏特性及动力特性求解模型,在实验验证数值计算方法准确性的基础上,通过比较分析了传统迷宫密封与新型涡流槽密封在不同进出口压比、预旋比工况下的泄漏特性与动力特性,研究了新型涡流槽结构对密封泄漏特性及动力特性的影响机理。研究结果表明:随着涡流槽数量的增加,涡流槽密封的泄漏量逐渐降低;在同一压比下,不同涡流槽数新型密封的泄漏量之间差值随着压比的增大而增大。当压比为6时,64涡流槽的新型密封较传统迷宫密封,泄漏量下降了3.37%;在高预旋比的工况下,不同涡流槽数量密封的切向气流力均与转子涡动方向相反,起到抑制转子涡动的作用,且随着涡流槽数量的增加,切向气流力也随着增大;随着转子涡动频率的增大,三种不同涡流槽数量密封的交叉刚度先减小到负值然后增大到正值。涡流槽密封的有效阻尼均高于传统迷宫密封,新型涡流槽密封可以提高转子系统的稳定性。  相似文献   

10.
润滑膜的空化效应对流体动压型机械密封的密封性能影响显著。以煤油基磁流体润滑斜线槽上游泵送机械密封为研究对象,考虑空化热效应以及黏温效应,建立润滑液膜特性的数值分析模型,以液膜中的气相体积分数为指标,研究工况和结构参数对密封性能的影响规律,并与仅考虑黏温效应的模型进行对比。结果表明:因空化热模型考虑液膜介质饱和蒸汽压力随温度变化,考虑空化热效应时的开启力、泄漏率和气相体积分数均小于仅考虑黏温效应下的对应值,但2种条件下各参数的变化趋势基本一致;转速和槽径比增大,空化效应增强,而进口压力、膜厚、径向夹角和槽数的增大会削弱空化效应;转速、槽深、径向夹角、槽径比增加,会导致泄漏率增加,而进口压力和槽数的增加能够提升密封性能。  相似文献   

11.
X-rings were introduced as a result of the limitations of O-rings that twist, especially during dynamic applications. The X-ring design avoids twisting, and the presence of a groove between the lobes acts as a lubricant reservoir that improves the packing life of these seals. Because of the multiple seal points, less squeeze rate is required to provide an effective seal. In addition, friction and wear is decreased, which increases seal life and decreases maintenance costs. Therefore, a better understanding of the behavior and stress distribution of X-rings under a loading condition of uniform squeeze rate and internal pressure is necessary. However, most research to date has been done on the O-ring. We focused on analysis of contact length and contact stresses developed in X-rings under a uniform squeeze rate of 20% (which is suitable for static applications) using a photoelastic experimental hybrid method, and ascertained the packing ability of the X-ring. We show that sealing rings with the X geometry have considerably higher contact stresses than O-ring seals. Also, the contact stresses were higher than the internal stresses of the X-ring. Therefore, our analysis of the contact stresses is adequate in establishing the behavior of the X-ring.  相似文献   

12.
The gas-film-lubricated mechanical face seal is a combined hydrodynamic and hydrostatic seal with positive leakage. Up to now, it has been widely accepted by end, users and builders of high-speed turbo compressors. The groove technology on the sealing face of the seat is one of the core technologies of dry gas seals. This article presents a patented herringbone spiral-grooved gas seal. Its one-dimensional analytical solution and two-dimensional numerical solution methods for the gas-film pressure distribution on the sealing face are presented. Up to now, more than 200 gas seals adopting this groove technology have been applied successfully in high-speed turbo compressors that deal with dangerous process gas in the oil refinery and petrochemical industries. The theoretical analyses and field applications show that gas seals with herringbone spiral grooves are advanced and practicable.  相似文献   

13.
上游泵送机械密封是一种具有环保、长寿命、低能耗的高新密封技术,其应用前景将十分广阔。端面液膜特性是决定上游泵送机械密封工作寿命和密封性能好坏的关键因素。主要依据流体雷诺方程和Muijderman无限窄槽理论,再用端面槽型因子对其进行修正,推导了螺旋槽上游泵送机械密封端面间液膜的径向压力分布、泄漏率、承载力、摩擦力、摩擦系数等液膜特性参数的计算公式,并重点分析了操作参数与槽型参数对端面摩擦系数的影响。研究表明,摩擦系数随转速和粘度增加而增加,随压力增加而减小。槽深H'=2.5、槽数Ng=10~18、槽宽比B=0.6~0.8、槽长比l=0.6~0.7时,密封环端面间摩擦系数较小,液膜特性较好,这时端面间间隙对摩擦系数几乎没有影响。此研究结果可为上游泵送机械密封的正确使用和设计提供依据。  相似文献   

14.
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.  相似文献   

15.
机械密封监控系统设计方案   总被引:1,自引:1,他引:0  
在分析了国内外在机械密封监控系统研究现状的基础上,制定了机械密封监控系统,该系统在硬件上采用DSP,在软件上采用先进的智能控制算法。它可以以一种预程序化受控方式对密封的工作条件和环境的变化做出快速的反应,使机械密封在满足泄漏量、温度、磨损率等反馈参数的要求下,处于最佳的工作状态,从而提高机械密封的可靠性并延长其寿命。  相似文献   

16.
Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators,especially in high parameter hydraulic systems.Only elastic deformations of hydraulic reciprocating seals were discussed,and hydrodynamic effects were neglected in many studies.The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals,and few of these models had been simultaneously validated through experiments.By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal,a numerical fluid-solid interaction model consisting of fluid lubrication,contact mechanics,asperity contact and elastic deformation analyses is constructed with an iterative procedure.With the SRV friction and wear tester,the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal.The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition.The experimental result is used to validate the fluid-solid interaction model.Based on the model,The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction,mixed lubrication and full film lubrication conditions,including of the contact pressure,film thickness,friction coefficient,liquid film pressure and viscous shear stress in the sealing zone.The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal,and can also be widely used to study other hydraulic reciprocating seals.  相似文献   

17.
This paper is concerned with the wear of PTFE seals used in connection with reciprocating ceramic-coated rods. An analysis of the relationship between the surface topography of ceramics and wear of PTFE seals was undertaken, formulating three hypotheses which have been investigated experimentally using a seal test rig and a system for three-dimensional surface roughness analysis. It was observed that no running-in of the rod surface lakes place and, consequently, the tribological situation never stabilizes. It was shown that seal wear rate is dependent on the number of asperities penetrating the lubricant film thickness, the wear rate being correlated to a functional parameter (Spk_0) which was especially developed to describe the peak height above the mean plane. Furthermore, it was illustrated how the structure of ceramics allows the lubricant to flow unhindered between isolated asperities in contrast to the traditionally polished structure of steel which restricts the lubricant flow.  相似文献   

18.
在直通型迷宫密封的基础上对静子边界进行改进,设计矩形凹槽、前置矩形凸起、后置矩形凸起3种矩形结构迷宫密封结构,采用CFD三维分析的方法,研究各迷宫密封在不同压比、转速下的泄漏特性,并分析流场内部轴向压降、速度场、湍动能耗散率及流线等情况,探讨密封的流动机制。研究结果表明:压比对迷宫密封封严性能的影响很大,随着压比的增加,迷宫密封的泄漏量逐渐增大,而转速对迷宫密封封严性能的影响很小;矩形凸起结构具有更低的泄漏量,且其泄漏量随压比的变化更不敏感,能在更宽域的压比范围内稳定的工作,其中前置矩形凸起型结构具有最优的密封效果。在静子上设置矩形结构能破坏气体流动的边界,强化湍流效果,增加湍动能耗散,从而有效降低泄漏量。  相似文献   

19.
An experimental study on friction and wear of carbon-graphite mechanical face seal, used in rotary joints of paper industries, has been presented. Experimental setup has been designed and developed to simulate the actual industrial environment faced by mechanical seal. Actual mechanical face seals (same material, surface roughness and dimensions) have been used to explore the effect of operating environments, steam pressures, speeds and balance ratios on the wear rates and friction losses. An experimental parametric study on four balance ratio conditions with constant speed and variable steam pressures has been performed, which has shown that a substantial reduction in frictional torques and wear rates is achievable with low balance ratios. The photomicrographs of seal wear and list of weight loss data have been reported in the present paper. The measured frictional torque data are also plotted against the balance ratios and finally the required balance ratio condition, to achieve an approximately 2 year's service life of mechanical seal, has been proposed.  相似文献   

20.
为探究旋转唇形密封的失效机制,综合考虑流体、微凸体、弹性变形和温度对旋转唇形密封的影响,构建旋转唇形密封多场耦合模型,并基于多场耦合模型与关键点更新策略提出混合润滑状态下旋转唇形密封的磨损退化模型仿真方法。通过设计故障模拟试验,将试验结果与仿真结果进行对比,验证了仿真方法的有效性。结果表明:唇形密封件在初期磨损速率较大,之后趋于平缓;唇尖处接触压力最大,磨损速率最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号