首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 0–5 mol% addition of La(Mg2/3Nb1/3)O3 (LMN) on the phase transition and ferroelectric behaviors of Pb[(Mg1/3Nb2/3)1-xTix]O3 (PMNT) ceramics with compositions near the morphotropic phase boundary (MPB) were studied. An evolution of structure from rhombohedral to tetragonal was found with increasing PbTiO3 (PT) content across the MPB (at ∼32.5 mol% PT), and a coexistence of both rhombohedral and tetragonal phases was also found at the MPB. The dual-phase field extended toward the lower PT content side of the MPB, and, moreover, the rhombohedrality or tetragonality was reduced, especially for the compositions near the MPB, by the addition of La in PMNT. The ferroelectric transition was found to change from normal to diffuse as the La content increased and the compositions became more rhombohedral. In accordance with the structural evolution, the change of remanent polarization ( P r) and coercive field ( E c) also became gradually indistinct, and both P r and E c were reduced. For compositions near the MPB, both PMNT and La-modified PMNT had a similar electromechanical factor ( k p) in a range around 0.55–0.60, but the mechanical quality factor ( Q m) was significantly reduced for the La-modified PMNT. The piezoelectric coefficient ( d 33), however, was largely improved with increasing La content in PMNT of compositions at MPB. A high value of d 33∼ 815 pC/N was obtained for the 5-mol%-La-modified ceramics, but it was associated with a low value of Q m.  相似文献   

2.
Morphotropic Phase Boundary in the Pb(Zn1/3Nb2/3O3)-BaTiO3-PbTiO3 System   总被引:1,自引:1,他引:0  
The morphotropic phase boundary (MPB) in the relaxor ferroelectric system Pb(Zn1/3Nb2/3O3)-BaTiO3-PbTiO3 (PZN-BT-PT) with 15 mol% BT was investigated through dielectric permittivity and high-temperature X-ray diffraction measurements. It was revealed that MPB is a broad composition region extending from 12 to 18 mol% PT, within which the temperatures of the permittivity maximum are close to the ending temperatures for the phase transformation from coexisting rhombohedral and tetragonal phases to cubic phase on heating. When the specimen is cooled, the starting temperatures for the rhombohedral-to-tetragonal phase transition increase with increasing PT content. The large thermal hysteresis observed by X-ray diffraction is caused by the phase transformation between rhombohedral and tetragonal phases. On cooling, the MPB curves toward the PT-rich side, so that ceramics within this composition range undergoe successive phase transitions from cubic to rhombohedral and from rhombohedral to tetragonal phase. The diffuseness of the paraelectric-to-ferroelectric phase transition is remarkably decreased by the addition of PT. The enhanced dielectric permittivity peak values for the MPB compositions are correlated with the reduced lattice distortion and phase coexistence.  相似文献   

3.
The phases of PLZT, (Pb,La)(Zr,Ti)O3, or L / Z / T for L <12 and T <10 were detected via determination of capacitance at varying temperatures at 0 field and via polarization at varying fields at room temperature and at selected elevated temperatures. It was possible to determine two different orthorhombic phases, and three rhombohedral (hexagonal) phases, one of which only exists at elevated temperatures. Two sets of phase diagrams were constructed with the phases as a function of temperature, and electric field, respectively. Temperature/field phase diagrams for 0/100/0, 2.95/5, and 4/95/5 were also constructed. A comparison was made between room-temperature and 0 field PLZT phase diagrams determined via X-ray diffraction, capacitance, and polarization.  相似文献   

4.
The elastic and piezoelectric properties of PLZT ceramics with a 65/35 Zr/Ti ratio undergo pronounced changes as La is added to the structure. At the rhombohedral-tetragonal phase boundary, material constants plotted as functions of La concentration show strong discontinuities in slope; these discontinuities provide a precise means of locating the boundary. The radial-mode coupling factor, kp , compliance coefficient, S11 E , and piezoelectric coefficient, d31 , attain peak values at the boundary, whereas Poisson's ratio, σE, and the resonance-frequency constant exhibit pronounced minima. This behavior is evidence of the increasing ferroelastic sensitivity of the material as the distortion angle of the rhombohedral phase approaches a minimum.  相似文献   

5.
The successive phase transformations in MgO-doped BaTiO3 were studied. Upon MgO doping, dielectric anomalies corresponding to lower phase transformations were broadened and depressed, while an anomaly for a cubic–tetragonal transformation remained and shifted to a lower temperature. XRD peak splitting upon tetragonality of BaTiO3 was decreased, and the peaks exhibited abnormally broadened profiles which are different from the one for cubic BaTiO3 above T c. Raman spectroscopy revealed the existence of orthorhombic phase at room temperature for the solid solution with 0.5 mol% or more MgO. The temperature dependence of the Raman spectrum showed that orthorhombic and rhombohedral phases in MgO-doped BaTiO3 were stabilized at higher temperatures than pure BaTiO3.  相似文献   

6.
X-ray diffraction (XRD) and electron microscopy investigations have been performed on Sc2O3-stabilized ZrO2 as-sintered and after aging in air or in wet-forming gas at 850°C for 1000 h. Some tetragonal to monoclinic transformation had occurred in the near-surface regions of 4 mol% Sc2O3 samples after aging; the phase transition was more severe for samples aged in the forming gas ambient. A decrease of ∼20% in electrical conductivity accompanied the aging. In 6 mol% Sc2O3 samples, although no cubic to tetragonal transformation was detected, both the electrical conductivity and the activation energy for ionic conductivity decreased significantly during aging. Ten mole percent Sc2O3 samples did not show appreciable change in electrical conductivity due to aging, although some near-surface cubic to rhombohedral transformation did occur. Sharpening of the (400)t XRD peak of Sc2O3-stabilzed tetragonal ZrO2 accompanies the change(s) in the electrical conductivity.  相似文献   

7.
Gd2O3-doped Bi2O3 polycrystalline ceramic samples containing between 10 and 26 mol% Gd2O3 were fabricated by pressureless sintering of powder compacts. As-sintered samples were cubic (CaF2 structure). The cubic solid solutions underwent transformation to a rhombohedral phase when annealed at lower temperatures. Under certain conditions, the cubic phase fully transformed to the rhombohedral phase of the same composition, and the kinetics were thermally activated. This suggested that the cubic → rhombohedral transformation was a massive transformation. The transition temperatures for the occurrence of a massive transformation were experimentally determined by measuring the conductivity as a function of temperature, as well as by measuring growth rate of the rhombohedral precipitates as a function of temperature. The activation enthalpy for interface motion was measured to be ∼200 kJ/mol for the samples studied. The kinetics of cubic → rhombohedral transformation could be described by the Johnson-Mehl-Avrami equation.  相似文献   

8.
Reaction mechanisms in the formation of PZT solid solution were studied under hydrothermal conditions (Pb/(Zr+Ti) = 1.0 to 1.9, Zr/Ti = 0/10 to 10/0, 1 M to 5 M KOH, 100° to 220°C, 2 h). A yellow tabular crystallite with tetragonal symmetry and Pb/Ti ∼ 2 was formed at 100° to 130°C. A PZT crystallite was formed just above 150°C. The crystallite was a mixture of Ti-rich PZT and Zr-rich PZT phases. When the temperature and KOH concentration were increased, the composition of the PZT product tended to be homogeneous. The PZT in the morphotropic phase boundary zone was formed at Zr/Ti = 5/5, 5M KOH, 220°C, 2 h. Neither PbTiO3 nor PbZrO3 was detected as a separate phase under the above hydrothermal conditions.  相似文献   

9.
Optical transmittance and crystal-lattice distortion and their relation were studied in hot-pressed La-doped Pb zirconate-titanate (PLZT) ferroelectric ceramics at the ferroelectric-antiferroelectric morphotropic phase boundary. In the thermally annealed condition, the crystal system of PLZT at the FE-AFE morphotropic phase boundary was pseudotetragonal and similar to the antiferroelectric phase (AFEβ) appearing in Pb(Zr, Ti)O3 and (Pb, Sr)ZrO3. Optical transmittance and crystal-lattice distortion change monotonically with respect to the Zr/Ti ratio, and the optical transmittance increases approximately linearly with decreasing lattice distortion. In view of these relations and the temperature dependence of the optical transmittance, it is suggested that light scattering in PLZT ceramics is caused mainly by the variation in refractive index encountered as the light travels from one domain or grain into another.  相似文献   

10.
An organic chelation reagent, cupferron, was used to coprecipitate Ti4+ andZr4+. After the materials were fired, they were mixed with PbO powder and fired again at high temperatures to obtain Pb(Zr,Ti)03 (PZT). It was confirmed that this method is useful for the preparation of homogeneous PZT having no compositional fluctuations. No coexistence range of the tetragonal and rhombohedral phases was observed in the PZT compositions near the morphotropic phase boundary.  相似文献   

11.
Electron and X-ray diffraction studies show that zirconia sintered with 5 to 15 mol% titanium under a vacuum of 10−1 to 10−2 torr (∼13 to 1.3 Pa) was partially stabilized as cubic and tetragonal phases, whose amounts increase with increasing Ti content. The stabilization of ZrO2 is due to the dissolution of TiO which forms as a second phase in the sintered specimen. The grain size of ZrO2 decreases with increase in Ti. The improvements in strength and thermal shock resistance of ZrO2 sintered with Ti are attributed to the reduction in ZrO2 grain size and the effect of partial stabilization.  相似文献   

12.
Lead lanthanum zirconate titanate (Pb1− x La x (Zr y ,Ti z )O3, PLZT) films containing [00 l ] preferentially oriented grains were produced successfully on YBa2Cu3O7− x -coated (YBCOcoated) SrTiO3 (STO) or YBCO/CeO2-coated silicon substrates; films containing randomly oriented grains were created on platinum-coated silicon substrates. The latter possessed significantly inferior ferroelectric properties, a fact ascribed to the presence of a paraelectric phase (TiO2) at the PLZT/platinum interface. On the other hand, the PLZT/YBCO/STO films exhibited better electrical properties than did the PLZT/YBCO/CeO2/Si films, and this phenomenon was attributed to better alignment of the grains in normal and in-plane orientations. In terms of fatigue properties, the [00l] textured films that were deposited on YBCO/CeO2/Si substrates possessed substantially superior polarization-switching-cycle endurance versus the randomly oriented films grown on Pt(Ti)/Si substrates. Moreover, the tetragonal films behaved much more satisfactorily than did the rhombohedral PLZT films. The ferroelectric parameters of tetragonal PLZT films showed no significant degradation up to 109 polarization switching cycles, whereas the remnant polarization and coercive force of the rhombohedral PLZT films had already degraded to 80% of their initial values after 108 cycles.  相似文献   

13.
Single crystals of Pb((Zn1/3Nb2/3)0.91Ti0.09)O3 (PZNT 91/9), 28 mm in diameter and 30 mm in length, have been successfully grown using a modified Bridgman technique with an allomeric seed crystal. X-ray fluorescence analysis (XRFA) measurement confirms that the effect of segregation is not serious. The segregation coefficient k for PbTiO3 content during crystal growth is 0.99, which causes some fluctuation in the composition along the growth direction. The fluctuation of composition and the complicated domain structure cause a variation of electric properties. Dielectric measurement indicates that PZNT 91/9 crystals exhibit an almost normal ferroelectric phase transition at ∼183°C from the tetragonal phase to the cubic phase. In addition, a weak frequency-dependent ferroelectric-ferroelectric phase transition is observed at ∼85°C, which is attributed to partial conversion of the rhombohedral phase to a tetragonal phase. The dielectric thermal hysteresis behavior and the existence of polarization above the Curie temperature verify that the phase transitions at ∼85° and 183°C are first order with a slight diffuse character and first order, respectively. It is demonstrated that the effects of segregation can be decreased and the homogeneity of the obtained PZNT 91/9 single crystals can be improved by optimizing growth parameters.  相似文献   

14.
Transparent ferroelectric ceramic materials suitable for a variety of electrooptic applications were found in the quaternary (Pb,La)(Zr,Ti)O3 system. These PLZT materials are prepared from mixed oxides and hot-pressed typically at 1100°C for 16 h at 2000 psi. Modifying the lead zirconate-titanate system with lanthana linearly reduces the Curie point with increasing lanthana. Transmission measurements in the visible and infrared show that these materials exhibit a nearly constant response from the absorption edge of 0.37 μ to ∼6 μm. The highest transmission values, essentially 100% (neglecting reflection losses of ∼18%) for thin polished plates, were noted for compositions containing 8 at.% La or more. Specific compositions within the system display electrooptic memory or conventional linear or quadratic electrooptic effects; on the basis of the magnitude of the electrooptic effects, they compare quite favorably with single crystals.  相似文献   

15.
A phase diagram of temperature versus strain was constructed for a (001)-oriented PbZr1− x Ti x O3 epitaxial single crystal thin film near the bulk morphotropic boundary composition ( x =0.47) on an (001)-oriented cubic substrate. The phase-field approach is employed. It is shown that a mixture of distorted rhombohedral, orthorhombic, and tetragonal phases exists under small values of strain, i.e., close to the in-plane clamped boundary condition. This result contradicts thermodynamic calculations assuming a single-domain state that predicted a single distorted rhombohedral phase under similar strains. Furthermore, it is demonstrated that under a large tensile strain current phase-field simulations showed a tetragonal phase with a 1 /a 2 twin structures as the stable state whereas thermodynamic calculations predicted an orthorhombic phase.  相似文献   

16.
The sinterability and decomposition of PLZT, (Pb,La)(Zr,Ti)O3, depend on the temperature and soaking time of both the calcination and sintering temperature. They were determined from the density, linear shrinkage, weight loss, and appearance of extra phases. At moderate calcination temperatures and times, there is no escape of PbO from the PLZT. At calcination temperatures higher than 1050°C and soaking times above 3 h, PbO escapes, and ZrO2 and La2Zr2O7 can be detected. Even when sintered in a PbO-rich atmosphere, some PbO evaporates during sintering either from free PbO or from the PbO bound in the PLZT in regions in the outer surfaces of the sintered body. An aggressive depletion of PbO during sintering can result in a complete disappearance of the grain boundary phase, giving an intragranular fracture.  相似文献   

17.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

18.
The system zirconia-scandia was investigated using X-ray diffraction analysis, differential thermal analysis, metallographic analysis, and melting point studies. Results reveal the monoclinic α1 phase (0 to 2 mol% Sc2O3), the tetragonal α2'phase (5 to 8% Sc2O3), the rhombohedral β phase (9 to 13% Sc2O3), the rhombohedral γ phase (15 to 23% Sc2O3), the rhombohedral δ phase (24 to 40% Sc2O3), and the cubic % phase (77.5 to 100% Sc2O3). The monoclinic α1 phase and the tetragonal α2'phase were found to transform to the tetragonal α2 phase over a wide temperature range depending on composition. The β, γ, and α phases transformed to a cubic phase at temperatures of %600%, 1100%, and 1300%C, respectively. A maximum melting point of %2870%C was found at %10% Sc2O3 and a eutectic at %2400%C at 55% Sc2O3.  相似文献   

19.
Microwave Dielectric Properties of Doped BaTi4O9   总被引:1,自引:0,他引:1  
Polycrystalline BaTi4O9 doped with Mn, Sn, Zr, Ca, Sr, and Pb was prepared from carbonates and oxides. Single-phase ceramics with densities exceeding 97% of theoretical were made with up to 3 mol% Mn; 6 mol% Sn, Zr, and Ca; and 8 mol% Sr and Pb. Dielectric constant, k , quality factor, Q , and temperature coefficient of frequency, τ f , of ∼37, 5675, and 15 ppm/°C, respectively, were determined at 4 GHz for undoped BaTi4O9. Doping did not significantly affect k and τ f . However, doping with Mn, Sn, and Pb lowered Q , whereas doping with Zr, Ca, and Sr increased Q by up to 2000. Additions of 0.5 mol% MnO2 as a second phase improved Q from 3675 to 7600.  相似文献   

20.
Additions of small amounts of silver to a PLZT dielectric with emphasis on the 88/12/70/30, Pb/La/Zr/Ti, composition were investigated. It was found that a few mole percent of Ag1+ could be incorporated into the PLZT lattice as a large acceptor cation and that it tended to reduce the lead vacancies, which are normally generated by the substitution of La3+ in the PLZT dielectric. The addition, up to 2 mol% of silver, decreased the 25°C dielectric constant from 2300 to 1700. However, the temperature coefficient of capacitance was improved to ±5% between -55° and +125°C, and the dissipation factor was reduced from 1.5 to 0.5%. Although the gravimetrically measured lead loss appeared to depend on the relative vapor pressure of lead oxide during sintering, the compensation mechanism of Ag1+ was not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号