首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
为了降低催化裂化汽油的硫含量,中国石油大连石化公司在1.4 Mt/a重油催化裂化装置上对XH-DSP催化裂化汽油强化脱硫钝化剂进行工业应用试验.结果表明,XH-DSP催化裂化汽油强化脱硫钝化剂具有优异的脱硫功能,催化裂化汽油中硫的脱除率(以硫传递系数计算)随加剂量的增大而升高,当加剂量为400μg/g时,脱硫率可达75%;加剂量降至130μg/g时,脱硫率为35%以上;平均加剂量为200μg/g时,脱硫率为49.39%.另外,XH-DSP强化脱硫钝化剂还具有良好的金属钝化功能,使用该剂后干气中的氢/甲烷体积比降低了23%.  相似文献   

2.
通过剖析不同的催化裂化汽油后处理工艺在处理高烯烃、高硫含量汽油时的工业装置运转数据,发现汽油烯烃和硫含量降低会造成辛烷值损失较大,生产成本急剧上升,原因在于汽油脱硫率超过97%时,烯烃饱和率急剧增加,由此带来氢耗上升,生产成本上升。为此,创建催化裂化汽油降烯烃与脱硫分步集成工艺,汽油烯烃含量降低由定向调控汽油组成的催化裂化工艺来实现,通过强化异构化和选择性氢转移反应,使汽油烯烃体积分数降低到不超过20%、硫质量分数不超过300μg/g,为后续汽油脱硫单元提供适宜的汽油原料。汽油脱硫后处理工艺控制汽油脱硫率不超过97%、烯烃饱和率不超过20%,最终辛烷值损失大幅降低,巧妙化解脱硫-烯烃饱和-辛烷值损失-低成本生产的矛盾链。工业应用结果表明,在相同的汽油脱硫率下,该工艺路线的烯烃饱和率和辛烷值损失大幅降低,实现了低成本地生产国Ⅴ和国Ⅵ车用汽油,得到大面积的应用,为汽油质量持续升级提供了强有力的支撑。  相似文献   

3.
针对以硫含量和烯烃含量高、芳烃含量低的催化裂化汽油为原料加氢脱硫生产满足车用汽油(Ⅴ)标准的汽油(简称国Ⅴ标准汽油)时辛烷值损失偏大的问题,开发了催化裂化汽油溶剂抽提-选择性加氢脱硫组合技术(简称RCDS技术)。中试结果表明,采用RCDS技术处理具有上述特点的催化裂化汽油生产国Ⅴ标准汽油时的RON损失比单独采用选择性加氢脱硫技术时减少0.9~1.9个单位。工业应用结果表明,采用RCDS技术处理硫质量分数为418~460 μg/g、烯烃体积分数为27.6%~27.9%、芳烃体积分数为19.2%~19.3%的清江石化催化裂化汽油,当产品硫质量分数降低至7 μg/g时,汽油RON损失仅为1.0~1.3个单位,且装置汽油收率高达99.9%。  相似文献   

4.
为研究催化裂化汽油低温吸附脱硫工艺,在实验室合成了一种多孔性复合吸附剂RAL-10,采用催化裂化汽油为原料进行了低温液相吸附脱硫实验,结果显示:RAL-10吸附剂的静态吸附硫容较一般吸附剂高,可达4.06μg/g;RAL-10吸附剂对汽油中的各类硫化物具有较好的吸附活性,并对大分子硫化物具有较高的吸附选择性;RAL-10新鲜吸附剂的动态起始吸附脱硫率能够达到100%;RAL-10吸附剂再生后的动态吸附脱硫活性与新鲜吸附剂相近,起始吸附脱硫率能够达到98%以上,动态起始吸附后的油品硫质量分数小于20μg/g。  相似文献   

5.
介绍了中国石油石油化工研究院和中国石油大学(北京)联合开发的GARDES技术在中国石油大庆石化公司炼油厂汽油加氢脱硫装置上的工业应用情况。结果表明:催化裂化汽油预加氢处理后二烯值降低到0.45 gI/(100 g)以下,分馏后轻汽油硫醇硫质量分数小于3 μg/g,可直接用于汽油调合,无需碱液脱硫醇处理,催化裂化汽油硫质量分数由97~103 μg/g降至26 μg/g,脱硫率为74%;产品汽油硫醇硫质量分数小于10 μg/g,平均RON损失仅为0.3个单位,可以用于生产满足国Ⅳ标准的清洁汽油组分。  相似文献   

6.
S Zorb工艺过程反应规律分析   总被引:1,自引:0,他引:1  
分析了S Zorb工艺过程中烃类化合物、硫化物和氮化物的反应规律,认为S Zorb工艺技术在脱硫反应的同时,烃类化合物以烯烃饱和反应为主,并伴有少量裂化反应,同时还有一定的脱氮效果。对烯烃质量分数为22.83%、硫质量分数为325μg/g的催化裂化汽油,在生产硫质量分数为6.3μg/g精制汽油时,烯烃的饱和率为15.16%,烃类的轻质化率为1.19%,辛烷值损失为0.8;催化裂化汽油中的硫醇和硫醚类硫化物最易脱除,通常其脱除率为100%,C_2噻吩和C_3~+噻吩是精制汽油中常见的残存硫化物。催化裂化汽油中氮化物以苯胺类化合物为主,其脱除率为32.4%。  相似文献   

7.
催化裂化汽油脱硫助剂TS-01的工业试验   总被引:3,自引:0,他引:3  
中国石油化工股份有限公司九江分公司在I套催化裂化装置进行了TS—0l催化裂化汽油脱硫双功能助剂的工业应用。结果表明:TS—0l剂对催化裂化汽油有较好的脱硫效果。当TS—0l剂注入原料中的量为70μg/g时,对催化裂化汽油的硫脱除率约为20%;注入量为120μg/g时,硫脱除率可达到25%-30%。汽油中脱除的硫主要以硫化氢形态转移至于气、液化气中。TS—01剂对产品分布及产品其它质量无明显影响,该剂亦有良好的金属钝化效果。  相似文献   

8.
介绍了青岛石化600 kt/a 催化裂化汽油加氢脱硫装置采用中国石化石油化工科学研究院开发的第三代催化裂化汽油选择性加氢脱硫(RSDS-Ⅲ)技术的工业应用情况。结果表明:RSDS-Ⅲ技术可以加工硫质量分数为300~900 μg/g的催化裂化汽油原料,生产国V排放标准汽油,产品汽油硫质量分数不大于10 μg/g。 与RSDS-II技术相比,RSDS-Ⅲ技术具有更高的选择性脱硫性能,可以实现国Ⅴ排放标准汽油的长周期生产。  相似文献   

9.
中国石化石油化工科学研究院开发了催化裂化汽油全馏分选择性加氢脱硫技术,在较高空速和氢油比条件下有利于催化剂选择性的发挥;原料油适应性研究结果表明,对于全馏分催化裂化汽油原料B,C,D,当采用催化裂化汽油全馏分选择性加氢脱硫技术将硫质量分数分别从206,357,69 μg/g降低到10,10,7 μg/g时,产品RON损失分别为0.7,0.6,0.2个单位。  相似文献   

10.
降低催化裂化汽油硫和烯烃含量的技术途径   总被引:14,自引:0,他引:14  
介绍几种降低催化裂化汽油硫及烯烃含量的技术途径,比较这些技术的使用范围及其优缺点。重点介绍国内已工业化的降低催化裂化汽油硫和烯烃含量的技术,包括加氢异构脱硫降烯烃(RIDOS)技术,多产异构烷烃的催化裂化新工艺(MIP)技术等。指出,前加氢法(催化裂化原料加氢预处理)具有诸多优点,但装置投资高,难以满足清洁汽油φ(烯烃)<20%的要求。催化裂化汽油后加氢法中,对于高硫、低烯烃原料,宜采用选择性加氢脱硫技术;对高硫、高烯烃原料,宜采用加氢异构脱硫降烯烃技术。催化裂化降烯烃新工艺、催化剂和助剂具有投资少,见效快等优点,但难以满足汽油φ(烯烃)<20%,ω(硫)<800μg/g的标准。催化裂化降烯烃技术与加氢技术的组合可能是我国生产新标准清洁汽油的适宜途径。  相似文献   

11.
根据酸-碱相互作用理论,对石脑油脱芳烃-FCC汽油耦联脱硫工艺进行实验研究。在无水AlCl3与石脑油质量比为0.06、反应温度为70 ℃、反应时间为60 min、络合脱芳烃助剂L与石脑油质量比为0.011的条件下,石脑油的芳烃质量分数可以从8.15%降至0.46%,脱芳烃率为94.36%。将石脑油络合脱芳烃生成的芳烃络合物MTS-1作为FCC汽油的络合脱硫剂,在反应温度为35 ℃、反应时间为3 min、剂油质量比为0.05的条件下,FCC汽油中的硫化物与络合物中的芳烃发生络合置换,脱硫率为72.24%,汽油质量收率为99.81%,汽油硫质量分数从526 μg/g降至146 μg/g,达到国Ⅲ排放标准对车用汽油硫含量的要求。  相似文献   

12.
FCC汽油轻芳烃组分氧化萃取脱硫工艺研究   总被引:2,自引:0,他引:2  
采用水热晶化法合成了含钛中孔分子筛Ti-MCM-41,并以此分子筛为反应催化剂,用催化氧化法对催化裂化汽油轻芳烃组分进行脱硫研究,考察了反应时间、反应温度、剂油体积比、双氧水体积分数对催化裂化汽油脱硫率的影响。研究结果表明,各因素对脱硫率影响的大小顺序为: 双氧水体积分数>反应温度>反应时间>剂油体积比;以Ti-MCM-41分子筛为催化剂,在反应时间60 min、反应温度70 ℃、剂油体积比为1:1、双氧水体积分数为3%的工艺条件下可使催化裂化汽油轻芳烃组分的硫含量从1 056.0μg/g降低到264.2μg/g。  相似文献   

13.
电化学制备硼氢化钠用于汽油脱硫的研究   总被引:1,自引:0,他引:1  
研究了利用电化学方法将偏硼酸钠还原成硼氢化钠,并加入一种金属化合物,用于汽油脱硫的方法。首先通过热力学计算,偏硼酸钠由电化学还原的方法生成硼氢化钠是可行的。考察了不同金属化合物、自制阴极电解液体积、反应时间、还原脱硫体系含水量等因素对汽油脱硫率的影响。结果表明,用10mL饱和硫酸镍甲醇溶液加入到30mL汽油中,再加入50mL阴极电解液,反应时间为15min后,催化裂化汽油的硫含量从310μg/g降低到161μg/g,其汽油脱硫率达48.1%。  相似文献   

14.
以燕山石化公司炼油厂催化裂化汽油为原料,以自制的大比表面积多孔复合材料负载Pb/PbO2和ZnO为阳极,考察了纯酸及其与盐复配电解体系对汽油脱硫率的影响。研究结果表明,在纯酸体系中,H2SO4电解体系脱硫率较高;在酸性复配体系中加入的同酸根的多价金属盐,不仅可以提高脱硫率,而且作为催化剂进一步加速了脱硫反应的速度,其中最佳的复配电解体系为H2SO4+MnSO4和HNO3+Ce(NO3)3。  相似文献   

15.
为使出厂汽油硫含量达到国Ⅳ汽油排放标准,中国石油兰州石化公司引进法国Prime-G+技术建成1套1.8 Mt/a催化裂化汽油加氢脱硫装置。标定结果表明:装置加工硫质量分数为195 μg/g的催化裂化汽油时,所得混合汽油产品硫质量分数为38.5 μg/g,硫醇硫质量分数为3.5 μg/g;研究法辛烷值损失为1个单位,达到设计(不大于1.8个单位)的要求;混合汽油产品的收率为99.91%,高于设计值(99.90%);能耗为934.6 MJ/t,低于设计值(937.2 MJ/t)。在满负荷条件下装置运行较为平稳,经济效益明显,每年可增加效益6.9亿元。  相似文献   

16.
MHUG技术生产满足欧V排放标准柴油的应用研究   总被引:3,自引:2,他引:1  
从柴油烃类组成和化学反应对MHUG技术的基本原理进行了阐述,同时针对不同企业的多个原料构成方案在中试装置上开展了MHUG技术生产满足欧V排放标准要求柴油的应用研究。结果表明,采用MHUG技术可以生产得到硫含量小于10gg-1、实测十六烷值51以上清洁柴油产品,且对各种原料构成方案均有良好的适应性。  相似文献   

17.
OCT-ME催化裂化汽油超深度加氢脱硫技术的开发   总被引:1,自引:0,他引:1  
为了满足未来“无硫汽油”新标准需要,中国石化抚顺石油化工研究院开发了FCC汽油超深度选择性加氢脱硫OCT-ME技术,该技术中FCC汽油先分馏, 轻馏分经无碱脱臭与FCC柴油吸收分馏,重馏分采用新研制的ME-1催化剂进行加氢脱硫。中试研究结果表明,无碱脱臭轻汽油与FCC柴油易于通过吸收分馏塔切割实现清晰分离,切割得到的轻汽油硫质量分数在4.0~6.0 μg/g之间; ME-1催化剂与参比剂相比,在反应温度低10 ℃的条件下,重汽油加氢脱硫产物的硫质量分数为5.0~8.0 μg/g时,烯烃饱和率降低22.7%~32.1%,RON少损失1.3~1.6个单位;OCT-ME技术能够在RON损失更低的情况下生产硫质量分数不大于10 μg/g的“无硫汽油”。  相似文献   

18.
降低汽油硫含量的重油裂化催化剂的开发   总被引:3,自引:0,他引:3  
摘要:降低汽油硫含量和重油催化裂化系列催化剂DOS的开发针对降硫组元及活性组元进行了研究,开发了降硫功能组元L酸碱对化合物和筛选了与之相匹配的分子筛活性组元。评价结果表明,开发的L酸碱对化合物能增加催化剂对大分子硫化物的转化,促进脱硫反应的发生;筛选的分子筛与L酸碱对化合物协同作用具有较好的降烯烃和降硫功能。开发的降硫重油裂化催化剂DOS在ACE装置和固定流化床装置评价结果表明:与工业降烯烃催化剂相比,重油转化能力强,抗重金属污染能力强,汽油硫含量可降低20%以上。  相似文献   

19.
气相法制备FCC催化剂活性组元的探索   总被引:4,自引:0,他引:4  
研究表明,增加高硅Y型沸石中的金属离子含量,有助于降低FCC汽油中烯烃含量和硫含量。气相化学法能有效地提高金属离子在高硅Y型沸石中的交换度,其催化剂具有好的选择性氢转移活性。固定流化床评价结果表明,与常规水热法制备的USY催化剂相比,以大庆常压渣油为原料,汽油中烯烃含量可从对比剂的27.54%降至23.39%,而硫含量从l010mg/L降至756mg/L。同时还具有高的水热稳定性及焦炭选择性。原因在于气相化学法能制备出品格完整、孔道畅通、具有较高金属离子含量的高硅Y型沸石,从而为制备降低汽油烯烃和硫含量催化剂的活性组元开辟了一条新途径。  相似文献   

20.
FCC汽油光催化氧化脱硫的实验室研究   总被引:3,自引:0,他引:3  
采用光催化氧化与液液萃取同时进行的方法,考察了光敏剂十六烷基三甲基溴化铵的用量、pH值、双氧水体积分数和反应时间对脱硫效果的影响。结果表明,在光源为主波长365nm的300W中压汞灯,双氧水体积分数为25%,FCC汽油与双氧水体积比为1:3,总体积为120mL,加入0.20g十六烷基三甲基溴化铵,以7000r/min高速均质5min,pH值为4,光照10h的实验条件下,FCC汽油脱硫率可达91.20%;脱硫后的双氧水及光敏剂可以重复使用,不会造成二次污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号