首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We propose a multimedia model-based methodology to evaluate whether a chemical substance qualifies as POP-like based on overall persistence (Pov) and potential for long-range transport (LRTP). It relies upon screening chemicals against the Pov and LRTP characteristics of selected reference chemicals with well-established environmental fates. Results indicate that chemicals of high and low concern in terms of persistence and long-range transport can be consistently identified by eight contemporary multimedia models using the proposed methodology. Model results for three hypothetical chemicals illustrate that the model-based classification of chemicals according to Pov and LRTP is not always consistent with the single-media half-life approach proposed by the UNEP Stockholm Convention and thatthe models provide additional insight into the likely long-term hazards associated with chemicals in the environment. We suggest this model-based classification method be adopted as a complement to screening against defined half-life criteria at the initial stages of tiered assessments designed to identify POP-like chemicals and to prioritize further environmental fate studies for new and existing chemicals.  相似文献   

2.
The past 5 years have seen some major successes in terms of global measurement and regulation of persistent, bioaccumulative, and toxic (PB&T) chemicals and persistent organic pollutants (POPs). The Stockholm Convention, a global agreement on POPs, came into force in 2004. There has been a major expansion of measurements and risk assessments of new chemical contaminants in the global environment, particularly brominated diphenyl ethers and perfluorinated alkyl acids. However, the list of chemicals measured represents only a small fraction of the approximately 30,000 chemicals widely used in commerce (>1 t/y). The vast majority of existing and new chemical substances in commerce are not monitored in environmental media. Assessment and screening of thousands of existing chemicals in commerce in the United States, Europe, and Canada have yielded lists of potentially persistent and bioaccumulative chemicals. Here we review recent screening and categorization studies of chemicals in commerce and address the question of whether there is now sufficient information to permit a broader array of chemicals to be determined in environmental matrices. For example, Environment Canada's recent categorization of the Domestic (existing) Substances list, using a wide array of quantitative structure activity relationships for PB&T characteristics, has identified about 5.5% of 11,317 substances as meeting P & B criteria. Using data from the Environment Canada categorization, we have listed, for discussion purposes, 30 chemicals with high predicted bioconcentration and low rate of biodegradation and 28 with long range atmospheric transport potential based on predicted atmospheric oxidation half-lives >2 days and log air-water partition coefficients > or =5 and < or =1. These chemicals are a diverse group including halogenated organics, cyclic siloxanes, and substituted aromatics. Some of these chemicals and their transformation products may be candidates for future environmental monitoring. However, to improve these predictions data on emissions from end use are needed to refine environmental fate predictions, and analytical methods may need to be developed.  相似文献   

3.
Existing methods used to screen chemical inventories for hazardous substances that may pose risks to humans and the environment are evaluated with a holistic mass balance modeling approach. The model integrates persistence (P), bioaccumulation (B), toxicity (T), and quantity (Q) information for a specific substance to assess chemical exposure, hazard, and risk. P and B are combined in an exposure assessment factor (EAF), P, B, and T in a hazard assessment factor (HAF), and P, B, T, and Q in a risk assessment factor (RAF) providing single values for transparent comparisons of exposure, hazard, and risk for priority setting. This holistic approach is illustrated using 200 Canadian Domestic Substances List(DSL) chemicals and 12 United Nations listed Persistent Organic Pollutants (POPs). Priority setting results are evaluated with those of multiple category-based screening methods employed by Environment Canada and applied elsewhere that use cutoff criteria in multiple categories (P, B, and T) to identify hazardous chemicals for more comprehensive evaluations. Existing methods have categorized the DSL chemicals as either higher priority (requiring further assessment; screened in) or lower priority (requiring no further action at this time; screened out). The priority setting results of the cutoff-based categorization are largely inconsistent with the proposed integrated method, and reasons for these discrepancies are discussed. Many chemicals screened out using existing methods have equivalent or greater risk potential than chemicals screened in. Decisions for screening assessments using binary classification on the basis of cutoff criteria can be flawed, and complementary holistic methods for priority setting evaluations such as the one proposed should be considered.  相似文献   

4.
A screening level risk assessment model is developed and described to assess and prioritize chemicals by estimating environmental fate and transport, bioaccumulation, and exposure to humans and wildlife for a unit emission rate. The most sensitive risk endpoint is identified and a critical emission rate is then calculated as a result of that endpoint being reached. Finally, this estimated critical emission rate is compared with the estimated actual emission rate as a risk assessment factor. This "back-tracking" process avoids the use of highly uncertain emission rate data as model input. The application of the model is demonstrated in detail for three diverse chemicals and in less detail for a group of 70 chemicals drawn from the Canadian Domestic Substances List. The simple Level II and the more complex Level III fate calculations are used to "bin" substances into categories of similar probable risk. The essential role of the model is to synthesize information on chemical and environmental properties within a consistent mass balance framework to yield an overall estimate of screening level risk with respect to the defined endpoint. The approach may be useful to identify and prioritize those chemicals of commerce that are of greatest potential concern and require more comprehensive modeling and monitoring evaluations in actual regional environments and food webs.  相似文献   

5.
Recent studies have indicated that in addition to narcosis certain chemicals in crude oils and refined petroleum products may induce specific modes of action, such as aryl hydrocarbon receptor (AhR) agonism. The risks these toxic compounds pose to organisms depend on internal exposure levels, as driven by the chemicals' bioaccumulation potential. Information on this potential however is lacking, as the chemicals' identity mostly is unknown. This study showed that AhR agonists bioaccumulate from oil-spiked sediments into aquatic worms and persist in the worms for at least several weeks. Chemical fractionations of eight pure oils into saturates, aromatics, resins, and asphaltenes (SARA), followed by effect-directed analyses using in vitro reporter gene assays revealed that the agonists predominantly are aromatic and resin-like chemicals. Some of the compounds were easily metabolized in vitro, while others were resistant to biotransformation. HPLC-assisted hydrophobicity profiling subsequently indicated that the AhR-active chemicals had a high to extremely high bioaccumulation potential, considering their estimated logK(ow) values of 4 to >10. Most of the AhR agonism, however, was assigned to compounds with logK(ow) of 5-8. These compounds were present mainly in the mid to high boiling point fractions of the oils (C(14)-C(32) alkane range), which are usually not being considered (the most) toxic in current risk assessment. The fractionations further revealed considerable oil and fraction-dependent antagonism in pure oils and SARA fractions. The results of this study clearly demonstrate that crude oils and refined petroleum products contain numerous compounds that can activate the AhR and which because of their likely persistence and extremely high bioaccumulation potential could be potential PBT (persistent, bioaccumulative and toxic) or vPvB (very persistent and very bioaccumulative) substance candidates. Many chemicals were identified by GC-MS, but the responsible individual compounds could not be exactly identified in the complex mixtures of thousands of compounds. Because this obstructs a classical PBT risk assessment, our results advocate an adapted risk assessment approach for complex mixtures in which low concentrations of very potent compounds are responsible for mixture effects.  相似文献   

6.
Measured concentrations of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil and groundwater detected in an industrial contaminated site were used to test several probabilistic options for refining site-specific ecological risks assessment, ranging from comparison of single effects and exposure values through comparison of probabilistic distributions for exposure and effects to the use of distribution based quotients (DBQs) obtained through Monte Carlo simulations. The results of the deterministic approach, which suggest that risk exceeds a level of concern for soil organisms, were influenced mainly by the presence of hot spots reaching concentrations able to affect acutely a large proportion of species, while the large majority of the area presents 1,2,4-TCB concentrations below those reported as toxic. Ground-(pore)water concentrations were compared with aquatic ecotoxicity data in orderto obtain an estimation of the potential risk for aquifers and streams in the adjacent area as well as for soil-dwelling organisms exposed via pore water. In this case, the risk is distributed over a large proportion of the site, while the local risk of hot spots was low, showing that risk characterization based exclusively on soil concentrations might be insufficient.  相似文献   

7.
Abstract

An informed opinion to a hugely important question, whether the food on the Europeans’ plate is safe to eat, is provided. Today, the Europeans face food-borne health risks from non-communicable diseases induced by excess body weight, outbreaks caused by pathogens, antimicrobial resistance and exposures to chemical contaminants. In this review, these risks are first put in an order of importance. Then, not only potentially injurious dietary chemicals are discussed but also beneficial factors of the food. This review can be regarded as an attempt towards a dietary-exposome evaluation of the chemicals, the average European adult consumers could chronically expose to during their life-times. Risk ranking reveals that currently the European adults are chronically exposed to a mixture of potentially genotoxic-carcinogenic contaminants, particularly food process contaminants, at the potential risk levels. Furthermore, several of the contaminants whose dietary exposures pose risks appear to be carcinogens operating with a genotoxic mode of action targeting the liver. This suggests that combined health risks from the exposure to a mixture of the chemical contaminants poses a greater potential risk than the risks assessed for single compounds. Over 100 European-level risk assessments are examined. Finally, the importance of a diversified and balanced diet is emphasized.  相似文献   

8.
Chronic health risks from inhalation of vapors from 15 pesticides were estimated for golfers in Boston, MA, Philadelphia, PA, and Rochester, NY. Two previously tested fate and transport models were used to determine exposures from pesticide inhalation for an adult golfer, and the exposures were in turn used to evaluate health risks from chronic non-carcinogenic effects through calculation of hazard quotients. Hazard quotients for all 15 chemicals were found to be much less one, indicating little risk of non-carcinogenic effects. Carcinogenic health risks for the five pesticides considered to be likely or possible carcinogens were determined to be much less than 10(-6). Based on these results, long-term health risks to golfers from inhalation of these 15 pesticides appear to be minimal in the Northeastern U.S. Estimated hazard quotients were found to be similar to those calculated from field measurements.  相似文献   

9.
Persistence, bioconcentration, and toxicity (PBT) are important hazardous properties of organic chemicals. In PBT assessments, it is desirable that the three criteria P, B, and T are independent. However, this requirement is not fulfilled if an aqueous lethal concentration (LC50) is used as T indicator because LC50 includes both bioconcentration and intrinsic toxicity. Indicators for intrinsic toxicity such asthe internal lethal concentration (ILC) are independent of a chemical's bioconcentration potential. However, ILC50 data are scarce and difficult to measure. Therefore, the toxic ratio (TR) is proposed here as an alternative. TR is defined as the ratio of a chemical's LC50 estimated from a QSAR for baseline toxicity and the experimental LC50 value. TR can also be interpreted as a measure of the ILC relative to the ILC for baseline toxicity. A TR of 10 separates specifically toxic chemicals from baseline toxicants. With some 800 chemicals, the practicability of classifying chemicals in terms of TR is demonstrated. Employing TR as toxicity indicator leads to different T scores for 30% of the chemicals studied. The baseline toxicity of hydrophobic compounds with TR < 10 does not receive a high T score but is still indicated by a high B score. The toxicity of specifically toxic hydrophilic substances is given additional emphasis by high TR values. These classification changes require that the interpretation of the B and T dimensions in PBT assessments is redefined.  相似文献   

10.
11.
Environmental risks of chemicals are still often assessed substance-by-substance, neglecting mixture effects. This may result in risk underestimations, as the typical exposure is toward multicomponent chemical "cocktails". We use the two well established mixture toxicity concepts (Concentration Addition (CA) and Independent Action (IA)) for providing a tiered outline for environmental hazard and risk assessments of mixtures, focusing on general industrial chemicals and assuming that the "base set" of data (EC50s for algae, crustaceans, fish) is available. As mixture toxicities higher than predicted by CA are rare findings, we suggest applying CA as a precautious first tier, irrespective of the modes/mechanisms of action of the mixture components. In particular, we prove that summing up PEC/PNEC ratios might serve as a justifiable CA-approximation, in order to estimate in a first tier assessment whether there is a potential risk for an exposed ecosystem if only base-set data are available. This makes optimum use of existing single substance assessments as more demanding mixture investigations are requested only if there are first indications of an environmental risk. Finally we suggest to call for mode-of-action driven analyses only if error estimations indicate the possibility for substantial differences between CA- and IA-based assessments.  相似文献   

12.
Efforts to manage the environmental risks of selenium (Se) in freshwater ecosystems have focused primarily on fish and birds, with invertebrates most often considered only as dietary sources of Se to higher trophic levels. Relatively little attention has been given to the risk of Se toxicity to invertebrates. Based on a review of 156 aqueous, dietary, or internal Se concentrations associated with toxic effects in 29 macroinvertebrate species, we found that water concentrations associated with acute lethality varied > 1000-fold among taxa, whereas toxic dietary concentrations varied approximately 100-fold and toxic internal concentrations varied about 30-fold. Sublethal effects occurred at approximately 10-fold lower concentrations than lethality. Sublethal effects occurred at 1-30 microg Se/g dry weight in invertebrate tissue, a range that encompasses proposed dietary thresholds for toxicity to fish and water birds, suggesting that Se may cause toxic effects in some invertebrate species at concentrations considered to be "safe" for the organisms consuming them.  相似文献   

13.
Four approaches for predicting the risk of chemicals to humans and fish under different scenarios were compared to investigate whether it is appropriate to simplify risk evaluations in situations where an individual is making environmentally conscious manufacturing decisions or interpreting toxics release inventory (TRI) data: (1) the relative risk method, that compares only a chemical's relative toxicity; (2) the toxicity persistence method, that considers a chemical's relative toxicity and persistence; (3) the partitioning, persistence toxicity method, that considers a chemical's equilibrium partitioning to air, land, water, and sediment, persistence in each medium, and its relative toxicity; and (4) the detailed chemical fate and toxicity method, that considers the chemical's relative toxicity, and realistic attenuation mechanisms such as advection, mass transfer and reaction in air, land, water, and sediment. In all four methods, the magnitude of the risk was estimated by comparing the risk of the chemical's release to that of a reference chemical. Three comparative scenarios were selected to evaluate the four approaches for making pollution prevention decisions: (1) evaluation of nine dry cleaning solvents, (2) evaluation of four reaction pathways to produce glycerine, and (3) comparison of risks for the chemical manufacturing and petroleum industry. In all three situations, it was concluded that ignoring or simplifying exposure calculations is not appropriate, except in cases where either the toxicity was very great or when comparing chemicals with similar fate. When the toxicity is low to moderate and comparable for chemicals, the chemicals' fate influences the results; therefore, we recommend using a detailed chemical fate and toxicity method because the fate of chemicals in the environment is assessed with consideration of more realistic attenuation mechanisms than the other three methods. In addition, our study shows that evaluating the risk associated with industrial release of chemicals (e.g., the toxics release inventory) may be misleading if only mass emissions are considered.  相似文献   

14.
A "multiplier" method is developed by which multimedia mass balance fugacity models designed to describe the fate of a single chemical species can be applied to chemicals that exist as several interconverting species. The method is applicable only when observed ratios of species concentrations in each phase are relatively constant and there is thus no need to define interspecies conversion rates. It involves the compilation of conventional transformation and intermedia transport rate expressions for a single, selected key species, and then a multiplier, Ri, is deduced for each of the other species. The total rate applicable to all species is calculated as the product of the rate for the single key species and a combined multiplier (1 + R2 + R3 + etc.). The theory is developed and illustrated by two examples. Limitations of the method are discussed, especially under conditions when conversion rates are uncertain. The advantage of this approach is that existing fugacity and concentration-based models that describe the fate of single-species chemicals can be readily adapted to estimate the fate of multispecies substances such as mercury which display relatively constant species proportions in each medium.  相似文献   

15.
To extrapolate credibly from individuals in the laboratory to field populations, it is essential to account for genetic differences in susceptibility to toxic stress and thus incorporate genetic variability into ecological risk estimates. In this study, the distribution of sensitivities across two toxic chemicals among and within field populations of Daphnia magna were used to quantify genetic variability. The study employed 30 D. magna clones from three geographically separate European populations. The sensitivity of each population studied and its constituent clones was estimated in terms of the concentrations of lambda-cyhalothrin and cadmium impairing individual fitness by 10 and 50% (EC10-50). Results revealed that differences in tolerance among clones within populations were large when compared with differences between populations and that the genetic range of sensitivities to toxic stress within populations was log-normally distributed. Furthermore, reported variation in sensitivity values to toxic stress among different laboratory species, populations, and clones was similar to that observed among and within field populations of Daphnia. These results suggest that it is possible to estimate genetic variability by estimating the tolerance distribution of laboratory populations and clones and that extrapolation approaches currently used in ecological risk assessment should explicitly incorporate genetic variability in tolerance into risk estimates.  相似文献   

16.
Multimedia fate and multipathway human exposure models are widely adopted in assessments of toxicological risks of chemical emissions at the regional scale. This paper addresses the question of how much spatial detail is necessary in such models when estimating the intake by the entire population in large, heterogeneous regions such as Europe. The paper presents a spatially resolved multimedia fate and multipathway exposure model for Western Europe, available as IMPACT 2002. This model accounts for relationships between the location of food production and drinking water extraction as well as where population cohorts live relative to where chemical emissions occur. The model facilitates estimation of environmental concentration distributions, related levels of contaminants in foods, and the fraction of a chemical release that will be taken in by the entire human population (the intake fraction) at the regional scale. To evaluate the necessary spatial resolution, the paper compares estimates of environmental concentrations and the intake fraction from the spatially resolved model with the results of a consistent clone without spatial resolution. An evaluation for disperse emissions of PeCDF (2,3,4,7,8-pentachlorodibenzofuran, CAS# 5120731-4) suggests reasonable agreement with monitoring data for most impact pathways with both versions of the model, but that the generic vegetation models for estimating contaminant concentrations in agricultural produce require improvement. A broader comparison for a range of organic chemicals demonstrates that the nonspatial models are likely to be appropriate in general for assessing dispersed sources of emissions. However, it is necessary to include generic compartments in such nonspatial models to account separately for emissions that enter lakes with long residence times versus rivers that feed directly into seas. For assessing an emission source in a specific location, using models that are not spatially resolved can result in underestimation, or overestimation, of the population's intake by at least 3 orders of magnitude for some chemicals.  相似文献   

17.
Accumulation of current-use pesticides in neotropical montane forests   总被引:2,自引:0,他引:2  
In Central America, chemical-intensive tropical agriculture takes place in close proximity to highly valued and biologically diverse ecosystems, yet the potential for atmospheric transport of pesticides from plantations to national parks and other reserves is poorly characterized. The specific meteorological conditions of mountain ranges can lead to contaminant convergence at high altitudes, raising particular concern for montane forest ecosystems downwind from pesticide use areas. Here we show, based on a wide-ranging air and soil sampling campaign across Costa Rica, that soils in some neotropical montane forests indeed display much higher concentrations of currently used pesticides than soils elsewhere in the country. Specifically, elevated concentrations of the fungicide chlorothalonil, the herbicide dacthal, and the insecticide metabolite endosulfan sulfate on volcanoes Barva and Poas, lying directly downwind of the extensive banana plantations of the Caribbean lowland, indicate the occurrence of atmospheric transport and wet deposition of pesticides at high altitudes. Calculations with a contaminant fate model, designed for mountain regions and parametrized to the Costa Rican environment, show that chemicals with a log K(AW) between -3 and -5 have a greater potential for accumulation at high altitudes. This enrichment behavior is quantified by the Mountain Contamination Potential and is sensitive to contaminant degradability. The modeling work supports the hypothesis suggested by the field results that it is enhanced precipitation scavenging at high elevations (caused by lower temperatures and governed by K(AW)) that causes pesticides to accumulate in tropical montane areas. By providing for the first time evidence of significant transfer of currently used pesticides to Central American montane cloud forests, this study highlights the need to evaluate the risk that tropical agricultural practices place on the region's ecological reserves.  相似文献   

18.
Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental fate of persistent organic pollutants (POPs).  相似文献   

19.
Relating the toxicity of metals to their internal concentration is difficult due to complicated detoxification processes within organisms. Only the metabolically available metals are potentially toxic to organisms, while metals in the detoxified form are toxicologically irrelevant. Accordingly, we developed a two-compartment toxicokinetic-toxicodynamic model for metals in a freshwater cladoceran, Daphnia magna. The toxicokinetics simulated the bioaccumulation processes, while the toxicodynamics quantitatively described the corresponding processes of toxicity development. Model parameters were estimated for D. magna and three metals, i.e., cadmium, zinc, and mercury, by fitting the literature data on metal bioaccumulation and toxicity. A range of crucial information for toxicity prediction can be readily derived from the model, including detoxification rate, no-effect concentration, threshold influx rate for toxicity, and maximum duration without toxicity. This process-based model is flexible and can help improve ecological risk assessments for metals.  相似文献   

20.
The appropriate selection and application of quantitative structure-activity relationships (QSARs) for the prediction of toxicity is based on the prior assignment of a chemical to its mode of toxic action. This classification is often derived from structural characteristics with the underlying assumption that chemically similar compounds have similar mechanisms of action, which is often but not necessarily the case. Instead of using structural characteristics for classification toward a mode of toxic action, we used Escherichia coli based bioanalytical assays to classify electrophilic chemicals. Analyzing a series of reactive organochlorines, epoxides, and compounds with an activated double bond, three subclasses of reactive toxicity were distinguished: "glutathione depletion-related toxicity", "DNA damage", and "unspecific reactivity". For both subsets of specifically reacting compounds a direct correlation between effects and chemical reactivity was found. Reaction rate constants with either glutathione or 2'-deoxyguanosine, which was used as a model for complex DNA, served well to set up preliminary QSARs for either glutathione depletion-related toxicity or toxicity based on DNA damage in the model organism E. coli. The applicability of QSARs for electrophilic chemicals based on mechanistically relevant reaction rate constants is a priori limited to a small subset of compounds with strictly identical mechanism of toxic action and similar metabolic rates. In contrast, the proposed bioanalytical assays not only allowed the experimental identification of molecular mechanisms underlying the observable toxicity but also their toxicity values are applicable to quantitatively predict toxic effects in higher organisms by linear correlation models, independent of the assigned mode of toxic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号