首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
本文采用直流电压降(DCPD)方法,使用恒K(K=27.5 MPa·m1/2)加载方式,在核电厂高温高压水环境中研究了氯离子对316L不锈钢的应力腐蚀裂纹扩展速率的影响。实验结果表明:在高温除氧水中,氯离子会加快316L不锈钢的应力腐蚀裂纹扩展速率,且当水中存在溶解氧时,氯离子对应力腐蚀裂纹扩展速率的影响更明显。  相似文献   

2.
《核动力工程》2017,(2):78-83
通过使用直流电压降法测量316不锈钢在高温水中的应力腐蚀速率,研究了10、20、40μg/kg乙酸锌对316不锈钢应力腐蚀的影响。实验结果显示,回路内注入10μg/kg乙酸锌时316不锈钢的裂纹扩展速率比加氢时的裂纹扩展速率低5倍,而加入20、40μg/kg乙酸锌后316的裂纹扩展速率上升。  相似文献   

3.
对不同冷变形量的核级316和316L不锈钢在高温水中的应力腐蚀开裂(SCC)行为进行了研究。通过试验,对溶解氧、氯离子和温度对裂纹扩展速率的影响进行了深入探讨和分析。试验结果显示,溶解氧和氯离子能明显加快材料的应力腐蚀开裂速率。当水化学条件一致时,325℃时的裂纹扩展速率较288℃时的裂纹扩展速率高。  相似文献   

4.
《核动力工程》2017,(4):153-158
利用慢应变速率试验,采用非标准的漏斗状试样,对国产690合金与321不锈钢异种金属焊接部位(包括690合金热影响区、焊缝、321不锈钢热影响区)在100 mg/L Cl~(-1)除O_2条件下和100 mg/L Cl~(-1)饱和O_2条件下的应力腐蚀行为进行研究。并通过慢应变速率应力-位移曲线和断口形貌对微观组织、氯离子、氧含量对于材料的应力腐蚀(SCC)的影响进行分析。结果表明:690合金热影响区在100 mg/L Cl~(-1)除O_2条件下不易发生SCC,在100 mg/L Cl~(-1)饱和O_2条件下表现出一定的SCC倾向;321不锈钢热影响区在2种条件下均表现出明显的SCC倾向;690合金热影响区的粗大晶粒不利于塑性变形的晶粒间相互协调,导致了热影响区SCC的倾向增大。  相似文献   

5.
310S不锈钢是一种性能较好的超临界水冷堆候选包壳材料,为丰富310S不锈钢在在超临界水环境下的应力腐蚀性能研究,特别是裂纹扩展速率方面的数据。本研究使用在线监测裂纹扩展的方法,测量了不同冷变形的310S不锈钢在多种工况下的裂纹扩展速率,分析了工质压力、高温蠕变等因素对310S开裂行为的作用。结果显示:超临界水或高温蒸汽的压力变化对310S不锈钢在500℃下的开裂行为的影响较为有限,冷变形作用促进材料的裂纹扩展,材料的高温蠕变行为在超临界水中对应力腐蚀开裂过程中具有较为重要的加速作用,特别是对于高冷变形和高载荷条件下的材料。本研究丰富了超临界水环境下310S的应力腐蚀裂纹扩展速率的数据,证明了提高材料的抗蠕变性能是优化包壳材料服役性能的重要手段之一,包壳设计制造的过程中应当避免较大幅度的冷变形。  相似文献   

6.
根据英国结构完整性评估标准BS7910(2013),考虑焊接残余应力影响,采用失效评估图(Failure Assessment Diagram,FAD)方法对镍基合金压力容器焊接部位内表面裂纹进行安全评估。首先采用有限元分析(Finite Element Analysis,FEA)方法,对压力容器V型、X型坡口环焊缝多层多道对接焊进行数值模拟,获取焊接残余应力分布,并将V型坡口对接焊焊接残余应力曲线与BS7910(2013)标准残余应力分布进行了对比;其次,对BS7910(2013)1级-FAC曲线进行公式化简,在焊接位置考虑残余应力、应力集中、塑性失效因子三因素的影响,对轴向内部半椭圆裂纹进行了失效应力预测。结果表明:残余应力的分布直接影响计算结果,残余拉应力越大,相应失效应力越小;残余应力值和裂纹深度a保持不变,失效应力计算结果随c/a(c为裂纹半长)增大而减小;当c/a比值不变,失效应力值随着a增大而减小。本文焊接残余应力模拟即及失效应力预测方法为以后含缺陷压力容器及管道失效应力计算(寿命预测)提供一定的参考。  相似文献   

7.
用慢应变速率法(SSRT)研究奥氏体不锈钢316Ti和316NG在酸性硫酸根离子介质中的应力腐蚀(SCC)行为.结果表明在酸性硫酸根离子环境中,316Ti产生应力腐蚀的临界浓度比316NG的高,但316NG的裂纹扩展速率比316Ti大.用电化学阳极极化法比较了两种奥氏体不锈钢在酸性硫酸根离子介质中的抗腐蚀性能的差异,结合微观分析,探讨了SO2-4离子对奥氏体不锈钢的SSRT-SCC损伤机理.  相似文献   

8.
16MND5钢广泛应用于核岛承压容器构件,其焊接接头不可避免地会引入高的残余应力,而焊后热处理可有效消减焊接残余应力以克服应力腐蚀裂纹的影响。本工作利用轮廓法和中子衍射技术研究了焊后热处理对16MND5钢焊接残余应力的影响。结果表明,轮廓法与中子衍射测试结果在趋势和数值上取得了较好的一致性,焊后热处理使焊接态的残余应力峰值从约420 MPa降低至约210 MPa。同时,利用金相法和SEM研究了焊后热处理对焊缝区域组织结构的影响。结果表明,焊后热处理主要表现为贝氏体和少量自回火马氏体的焊缝中心组织转变为回火贝氏体和回火马氏体,热处理后的焊缝区晶粒明显长大。  相似文献   

9.
为查明某核电厂核级316L奥氏体不锈钢管道射线插塞孔裂纹显示的成因,对含插塞孔不锈钢管段的宏/微观形貌、化学成分、力学性能、维氏硬度、断口形貌、腐蚀产物、应力分布等进行了分析。结果表明:裂纹以沿晶方式扩展,断口呈冰糖块脆性断裂花样并伴有大量氧化腐蚀产物,属于典型的压水堆一回路水介质条件下由插塞孔局部应变-硬化导致的晶间应力腐蚀开裂。引起应变-硬化的主要原因是插塞孔和插塞的过盈配合以及射线插塞孔密封焊缝焊接残余应力过高。建议加强在役机组同类结构的检查,减少新建机组类似结构的使用。  相似文献   

10.
高温水中不锈钢和镍基合金应力腐蚀破裂研究进展   总被引:3,自引:0,他引:3  
综述了近20看来国内外对高温水中不锈钢和镍基合金应力腐蚀破裂研究的最新研究结果,主要考察了溶解氧、溶解氢、侵蚀性阴离子、温度、材料冶金条件等因素对主尖力腐蚀裂纹萌生和扩展的影响。  相似文献   

11.
It has been found that a single tensile overload applied during constant load amplitude might cause crack growth rate retardation in various crack propagating experiments which include fatigue test and stress corrosion cracking (SCC) test. To understand the affecting mechanism of a single tensile overload on SCC growth rate of stainless steel or nickel base alloy in light water reactor environment, based on elastic-plastic finite element method (EPFEM), the residual plastic strain in both tips of stationary and growing crack of contoured double cantilever beam (CDCB) specimen was simulated and analyzed in this study. The results of this investigation demonstrate that a residual plastic strain in the region immediately ahead of the crack tips will be produced when a single tensile overload is applied, and the residual plastic strain will decrease the plastic strain rate level in the growing crack tip, which will causes crack growth rate retardation in the tip of SCC.  相似文献   

12.
Environmentally assisted cracking (EAC) or, in other words, stress corrosion cracking (SCC) of in-core materials has become an increasingly important reason for the downtime and maintenance costs of nuclear power plants (NPPs). Use of small size specimens for stress corrosion testing of irradiated materials is necessary because handling of high dose rate materials is difficult and the availability of these materials is limited. A drawback of using small size specimens is that they do not in some cases fulfil the requirements of the relevant testing standards and sometimes their limited load-bearing capacity prevents corrosion fatigue tests and tests with static loading at reasonable KI values. The test results show that the ductile fracture resistance curves of a Cu–Zr–Cr alloy are, to some extent, independent of the specimen geometry and size. However, the curves of small specimens deviate from the curves of larger specimens at high J values (large plastic zone relative to the remaining ligament) or when the crack growth exceeds about 30% of the remaining ligament. The size dependency of the tested Cu–Zr–Cr alloy seems to be a consequence of decreasing stress triaxiality as the size of the specimen is decreased. The results of the SCC tests of sensitized SIS 2333 stainless steel (equal to AISI 304) specimens in simulated boiling water reactor (BWR) water show that the plastic deformation of the remaining ligament of the specimen has no significant effect on the environmentally assisted crack growth rate. This indicates that stress corrosion testing is not limited by the specimen size. The size dependency in SCC tests should be further studied by conducting tests using various specimen sizes.  相似文献   

13.
The fatigue crack growth behavior of the weld heat-affected zone (HAZ) of type 304 stainless steel in high temperature water which simulates the boiling-water reactor environment was investigated to clarify the effects of welding residual stress, cyclic frequency f and thermal aging on crack growth rate. A lower crack growth rate of the HAZ than of the base metal was observed in both the high temperature water and the ambient air caused by the compressive residual stress. The crack closure point was measured in the high temperature water. The effect of the welding residual stress on the crack growth rate of the HAZ can be evaluated separately from the environmental effect through the crack closure behavior. The high temperature water increased the crack growth rate at a cyclic frequency of 0.0167 Hz but did not affect it much at 3 and 5 Hz. The crack growth behavior of the thermally aged HAZ at 400 °C for 1800 h was almost the same as that of the unaged material tested at 0.0167 and 5 Hz in the high temperature water.  相似文献   

14.
In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.  相似文献   

15.
The stress corrosion cracking (SCC) behaviour of low-alloy, reactor-pressure-vessel (RPV) steels in oxygenated, high-temperature water and its relevance to boiling water reactor (BWR) power operation, in particular its possible effect on both RPV structural integrity and safety, has been a subject of controversial discussions for many years. This paper presents the results of an experimental study on crack growth through SCC in three, nuclear-grade, steels (SA 533 B Cl.1, SA 508 Cl.2, 20 MnMoNi 5 5) under simulated, BWR water-chemistry conditions. Modern, high-temperature water loops, on-line crack-growth monitoring and fractographic analysis in the scanning electron microscope were used to quantify the cracking response of pre-cracked, fracture-mechanics specimens under a variety of mechanical and environmental conditions. Corrosion-assisted crack advance could be only initiated by active loading within the environment. If SCC crack advance at constant load was observed, initiation of crack growth had always occurred while increasing the load to the intended value for subsequent, static-load testing. During the constant load period the rate of SCC crack advance rapidly decayed and crack arrest occurred within a period of <100 h (for tests with KI60 MPa m1/2). Supplementary experiments with slowly increasing loading revealed that the initiation of crack growth, and the extent of further crack advance, are crucially dependent upon maintaining both a positive crack-tip strain rate and a high sulphur-anion activity in the crack-tip environment. It is concluded that there is no sustainable susceptibility to SCC crack growth under purely static loading, as long as small-scale-yielding conditions prevail at the crack-tip and the water chemistry is maintained within current BWR/NWC operational practice (EPRI water chemistry guidelines). However, sustained, fast SCC (with respect to operational time scales) cannot be excluded for faulted water-chemistry conditions (>EPRI action level 3) and/or for highly stressed specimens either loaded near to KIJ or with a high degree of plasticity in the remaining ligament.  相似文献   

16.
Stress corrosion cracking (SCC) simulation code has been developed for the evaluation of SCC behavior in specimens in the shape of field components. The code utilizes numerical calculation of stress/strain states at a crack tip using finite element methods and a formula describing the crack tip reaction kinetics containing unknown environmental parameters. The applicability of this simulation code was investigated by applying the code to the evaluation of SCC behavior in a mock-up of a bottom mounted instrumentation tube for a pressurized water reactor subjected to complex stress/strain states. The results indicate that crack growth rate in a component suffering from certain environments can be estimated using the developed SCC simulation code with pre-determined unknown parameters, using the experimental crack growth rate data measured on other specimens in the same environment.  相似文献   

17.
Stress corrosion cracking (SCC) of the welded joints in a reactor core shroud is the primary result of the residual stresses caused by welding, corrosion and neutron irradiation in a boiling water reactor (BWR). Therefore, the evaluation of SCC propagation is important for the safe maintenance of the core shroud. This paper attempts to predict the remaining life of the core shroud due to SCC failures in BWR conditions via SCC propagation time calculations. First, a two-dimensional finite element method model containing H6a girth weld in the core shroud was constructed, and the weld processing was simulated to determine the weld's residual stress distribution. Second, using a basic weld residual stress field, the SCC propagation was simulated using a node release option and the stress redistribution was calculated. Combined with the J-integral method, the stress intensity factors were calculated at depths of 2, 3, 4, 8, 12, 16, 19, 22, 25 and 30 mm in the crack setting inside the core shroud; then, the SCC propagation rates were determined using the relation between the SCC propagation rate and the stress intensity factor. The calculations show that the core shroud could safely remain in service after 9.29 years even when a 1-mm-deep SCC has been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号