首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ferret is a reflex-ovulating species in which receipt of an intromission induces a prolonged (+/- 12 h) preovulatory LH surge in the estrous female. This LH surge is probably stimulated by a large release of GnRH from the mediobasal hypothalamus (MBH). In Exp 1 we asked whether GnRH messenger RNA (mRNA) levels increase in response to mating so as to replenish the MBH GnRH stores needed to sustain the preovulatory LH surge. Estrous females were killed 0, 0.25, 0.5, 1, 3, 6, 14, or 24 h after the onset of a 10-min intromission from a male. Coronal brain sections ranging from the rostral preoptic area caudally to the posterior hypothalamus were processed for in situ hybridization using a 35S-labeled oligoprobe complementary to the human GnRH-coding region. We found no evidence of increased MBH GnRH mRNA levels during the ferret's mating-induced preovulatory LH surge. Instead, the number of GnRH mRNA-expressing cells dropped significantly in the arcuate region beginning 6 h after onset of intromission and remained low thereafter. Furthermore, cellular GnRH mRNA levels decreased in the arcuate region toward the end of the preovulatory LH surge. In Exp 2 we asked whether ovarian hormones regulate MBH GnRH mRNA levels in the female ferret. Ovariectomy of estrous females significantly reduced the number of GnRH mRNA-expressing cells in the arcuate region. This decrease was probably not due to the absence of circulating estradiol. Gonadally intact anestrous females had levels of MBH GnRH mRNA similar to those in estrous females even though plasma estradiol levels were equally low in anestrous females and ovariectomized females. Ovarian hormones other than estradiol may stimulate MBH GnRH mRNA levels in anestrous and estrous females.  相似文献   

2.
Although a neural site of action for estradiol in inducing a LH surge via a surge of GnRH is now well established in sheep, the precise target(s) for estrogen within the brain is unknown. To address this issue, two experiments were conducted during the breeding season using an artificial model of the follicular phase. In the first experiment, bilateral 17beta-estradiol microimplants were positioned in either the medial preoptic area (MPOA) or the mediobasal hypothalamus (MBH), and LH secretion was monitored. An initial negative feedback inhibition of LH secretion was observed in ewes that had estradiol microimplants located in the MPOA (6 of 6 ewes) or caudal MBH in the vicinity of the arcuate nucleus (4 of 4). In contrast, a normal LH surge was only found in animals bearing estradiol microimplants in the MBH (5 of 10). Detailed analysis of estradiol microimplant location with respect to the estrogen receptor-alpha-immunoreactive cells of the hypothalamus revealed that 4 of the 5 ewes exhibiting a LH surge had microimplants located bilaterally within or adjacent to the area of estrogen receptor-expressing cells of the ventromedial nucleus. Two of these ewes exhibited a LH surge without showing any form of estrogen negative feedback. In the second experiment, we used the technique of hypophyseal portal blood collection to monitor GnRH secretion directly at the time of the LH surge induced by estradiol delivered either centrally or peripherally. Central estradiol implants induced the GnRH surge. The duration and mean plasma concentration of GnRH during the surge were not different between animals given peripheral or central MBH estradiol implants. Cholesterol-filled MBH microimplants did not evoke a GnRH surge. We conclude that the ventromedial nucleus is the primary site of action for estradiol in stimulating the preovulatory GnRH surge of the ewe, whereas the MPOA and possibly the caudal MBH are sites at which estrogen can act to inhibit LH secretion. These data provide evidence for the sites within the ovine hypothalamus responsible for mediating the bimodal influence of estradiol on GnRH secretion and suggest that different, and possibly independent, neuronal cell populations are responsible for the negative and positive feedback actions of estradiol.  相似文献   

3.
A large body of evidence suggests that the neuroendocrine axis plays a major role in the reproductive aging of female rats. Since increased hypothalamic neuropeptide Y (NPY) neurosecretion is crucial in the preovulatory LH discharge in young rats, we tested the hypothesis that diminution in the preovulatory LH surge in middle-aged (MA) rats may be due to altered neurosecretory activity in NPYergic neurons. In Exp 1, we examined NPY levels in six microdissected hypothalamic nuclei, including median eminence (ME), arcuate nucleus (ARC), and medial preoptic area (MPOA), at 1000, 1200, 1400, 1600, 1800, 2000, or 2200 h on the day of proestrus in young (2.5- to 3-month old) and MA (7- to 9-month old) regularly cycling rats. At 1000 h, ME NPY levels in young rats were significantly lower than those in MA rats. In young rats, the ME NPY levels were significantly increased at 1400 h before the LH surge in the afternoon and thereafter decreased progressively during the interval of the LH surge. In MA rats, however, ME NPY levels decreased in the afternoon in association with an attenuated LH surge. In addition, in the ARC and MPOA, the other hypothalamic sites associated with induction of LH surge, NPY levels increased before and during the LH surge in young rats, no change in NPY levels in these nuclei was observed in association with the attenuated LH surge in MA rats. Also, NPY levels in the ARC and MPOA during the afternoon were significantly lower in MA compared with those in young animals. These results demonstrated the absence of an antecedent increase in NPY levels, specifically in the ME and ARC, during the afternoon of proestrus in MA animals. In a second experiment, we evaluated whether the absence of dynamic changes in NPY levels in the ME and ARC in MA rats was due to altered hypothalamic NPY gene expression. Regularly cycling young (2.5- to 3-month-old) and MA (8- to 10-month-old) rats were killed at 1000, 1200, 1400, 1600, 1800, 2000, or 2200 h on the day of proestrus. The medial basal hypothalamus was processed for prepro-NPY messenger RNA (mRNA) measurement by ribonuclease protection assay. In young rats, prepro-NPY mRNA levels were significantly increased at 1200 h and remained elevated throughout the afternoon. In contrast, in MA rats prepro-NPY mRNA levels remained unchanged before and during the attenuated LH surge. These results clearly indicate that the augmentation in NPY neuronal activity before and during the LH surge seen in young rats fails to manifest itself in middle-aged rats. As hypothalamic NPY participates in the induction of LHRH surge, our results suggest that reduced LHRH and LH surges in MA rats may be due to diminution in NPY secretion in these animals.  相似文献   

4.
We have investigated the inter-relationship between the opioid and aminergic systems in the control of secretion of the pro-oestrous LH surge and the involvement of delta-opioid receptor subtypes in this process. Conscious female rats bearing a cannula in the femoral artery were injected i.p. with a selective delta-opioid receptor agonist (DPDPE) either alone or with the opioid antagonist (naloxone) at 1300 h on the day of pro-oestrus. Blood samples were collected hourly between 1500 h and 1900 h, and plasma LH levels were measured by RIA. At the end of this period (1900 h), the animals were autopsied and the concentrations of the amines (noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT)) and their metabolites (dihydroxyphenolglycol (DHPG) and 5-hydroxyindoleacetic acid (5HIAA), metabolites of NA and 5HT respectively) were determined by HPLC with electrochemical detection in the medial preoptic area, suprachiasmatic nucleus, median eminence and arcuate nucleus. DPDPE abolished the LH surge and concomitantly decreased hypothalamic NA and DHPG concentrations in all the areas examined. The levels of DA, 5HT and 5HIAA were also reduced in all hypothalamic regions studied, except DA and 5HIAA in the suprachiasmatic nucleus. Naloxone reversed these inhibitory effects of the delta-agonist. We conclude that activation of delta-opioid receptors may exert an inhibitory effect on LH release. The effect is probably an indirect one mediated by the monoaminergic systems, as they are suppressed by DPDPE in nearly all the hypothalamic regions studied.  相似文献   

5.
6.
It has been suggested that hypothalamic median eminence (ME) might be a control site for luteinizing hormone-releasing hormone (LHRH) release. Thus, stimulatory and/or inhibitory inputs acting at this site might be involved in regulating LHRH release from the ME and, therefore, luteinizing hormone (LH) release from the anterior pituitary. Since a role for neuropeptide Y (NPY) on LH release has been suggested, we have hypothesized that NPY might act in the ME to control preovulatory LHRH release in hens. To examine this possibility we have determined: (a) the immunocytochemical distribution of LHRH and NPY in the ME of the hen, (b) the basal and NPY-stimulated release of LHRH in vitro from the ME of hens undergoing a natural or a premature preovulatory surge of LH, and (c) the tissue content of LHRH and NPY in microdissected MEs, at various times before and during a natural or a premature preovulatory surge of LH. A potential role for NPY on LHRH release in the ME is suggested for the following reasons. (a) There are opportunities for synaptic interactions between NPY and LHRH-containing axons at this site. LHRH-containing cell bodies localized in the anterior hypothalamus/medial preoptic area project to the ME. NPY-containing perikarya, concentrated in the ventromedial aspect of the arcuate nucleus, might contact LHRH processes going to the ME and/or might themselves send axons to the ME, (b) Addition of NPY to the incubation media increases LHRH release from microdissected ME tissue of hens killed at the time of the natural preovulatory surge of LH, but not in hens killed 7 h before the occurrence of this surge. However, the stimulatory effect of NPY on LHRH release can be induced at this latter time when a premature LH surge is elicited. While the natural preovulatory surge of LH occurs 4 h before the second ovulation in a sequence (C2 ovulation), administration of progesterone (P4) 10-14 h before the expected natural C2 ovulation advances the natural LH surge by 7-8 h. Thus, NPY might act as a physiological stimulus of LHRH release at the ME during the preovulatory surge of LH. This is suggested since in vitro basal LHRH release from denervated ME tissue does not change before and during the natural or the premature LH surge. Therefore, preovulatory release of LHRH in vivo might be under a continuous drive from stimulatory inputs to the LHRH neuron and NPY might be one of these stimulating factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The present study aimed to examine the effect of melatonin on naloxone-induced luteinizing hormone (LH) secretion in ovariectomized estrogen-primed rats. A single intracerebroventricular (i.c.v.) injection of naloxone (mu opioid receptor blocker, 15 micrograms) or an intravenous (i.v.) injection of LH-releasing hormone (LHRH, 50 ng/kg) elicited a transient and significant increase in the serum LH concentration within 10 min. While an i.c.v. injection of 100 ng melatonin by itself did not change the basal LH release, it almost completely inhibited the naloxone-induced LH release. Melatonin (10 ng) also significantly reduced the effect of naloxone. However, an i.c.v. injection of 100 ng melatonin did not affect the LHRH-induced LH release. In separate experiments, the effect of melatonin on naloxone-induced pulsatile LH secretion was studied in estrogen-treated rats. A continuous i.v. infusion of naloxone (20 mg/kg/h) induced LH pulses in rats treated i.c.v. with saline. An i.c.v. administration of 100 ng melatonin, which by itself did not affect basal LH secretion, significantly reduced the frequency, but not the amplitude, of LH pulses induced by the naloxone infusion. These results show that melatonin has a suprapituitary site of action to inhibit naloxone-induced LH release, and suggest that melatonin has an effect in inhibiting the activity of the hypothalamic LHRH pulse generator, either directly or indirectly, in female rats.  相似文献   

8.
Inhibitory and excitatory amino acid neurotransmitters have been suggested to participate in the feedback actions of estradiol (E2) on LH secretion. In the rat estrogen-receptive neurons have been demonstrated in the preoptic/anterior hypothalamic area (POA) and mediobasal hypothalamus/median eminence (MBH) and many of these neurons utilize gamma-aminobutyric acid (GABA) as neurotransmitter. The actions of excitatory amino acids (EAA) differ in ovariectomized (ovx) and ovx E2-substituted rats indicating that EAAs also participate in the positive feedback action of E2 on LH release. However, little information is available as to whether in vivo these transmitters exert their effects in the POA, where most of the GnRH perikarya are located, or in the MBH, i.e. at the nerve terminals. Therefore we conducted push pull cannula perfusions to compare the release rates of GABA, aspartate (ASP) and glutamate (GLU) in the MBH and POA. A subcutaneous implant of a silastic tube containing E2 resulted in LH surges in the afternoon of all treated animals. Prior to and during this LH surge the MBH release rates of neither GABA nor ASP nor GLU were significantly altered. In contrast, a conspicuous drop in preoptic GABA release occurred prior to and during the time of estrogen-induced LH surges and this was accompanied by enhanced preoptic secretion of ASP and GLU. In conclusion, we present the first data about amino acid release in the MBH during the E2-induced LH surge. Since only in the POA the LH surge is associated with changes in amino acid release, it appears that both inhibitory and excitatory amino acids act at the level of the GnRH cell bodies and/or dendrites and not on GnRH nerve terminals to mediate the feedback mechanism of E2 on LH release.  相似文献   

9.
10.
Used plasma corticosterone levels to assess the response to stress induced by ip injections of hypertonic saline in 27 male albino Harlan-Sprague rats with lateral hypothalamic (LH) or sham lesions. Ss with LH lesions displayed a corticosterone response equal to that of normal Ss under basal conditions, after control injections of isotonic saline, and 20 min after injection of hypertonic saline (1.5 M, 1.0 ml/100 g of body weight). The corticosterone response of Ss with LH lesions, however, was significantly less than that of normal Ss 90 min after injection of hypertonic saline when no water was available. With access to water, normal Ss displayed substantial drinking (14.5 ml/90 min), which resulted in a reduction in plasma corticosterone concentrations to a level observed after a control injection of isotonic saline, but the little water ingested by Ss with LH lesions (2.5 ml) had no effect on the pituitary-adrenal system. It is concluded that the failure of Ss with LH lesions to drink following a hydrational challenge is not the result of an exaggerated response to stress. (17 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
Compelling evidence shows that the episodic and cyclic secretion of hypothalamic luteinizing hormone releasing hormone (LHRH), the primary stimulator of pituitary LH release, is subject to regulation by neuropeptide Y (NPY). We have reported earlier that sequential treatment of ovariectomized (ovx) rats with estrogen and progesterone to stimulate a preovulatory-type LH surge elevated the levels of both NPY and preproNPY mRNA levels in the hypothalamus concomitant with dynamic changes in LHRH activity. The present study was designed to determine whether these elevations in NPY content and gene expression represent new synthesis of NPY that is crucial to elicit LHRH discharge. Ovx, steroid-primed rats received intracerebroventricular injections of an unmodified 20-mer oligodeoxynucleotide (oligo) complementary to the NPY mRNA sequence. Control rats were injected similarly with either saline or the sense or missense oligos. Results showed that control rats displayed a characteristic surge-type elevation in plasma LH levels that was not affected by the administration of missense or sense oligos. However, in rats injected with the antisense oligo, the steroid-induced LH surge was completely blocked. In an additional experiment, NPY peptide levels were measured in microdissected hypothalamic sites following the injection of antisense or missense oligos. NPY antisense oligo administration blocked the significant increases in NPY levels in the median eminence-arcuate area, the medial preoptic area and lateral preoptic area seen in control rats. These results suggest that sequential ovarian steroid treatment augments NPY synthesis in the hypothalamus and this newly synthesized NPY is critical for induction of the LHRH and LH surge.  相似文献   

12.
The inhibitory effect of inflammation and endotoxins on the secretion of reproductive hormones from the hypothalamo-pituitary axis is well documented. A comparison of the luteinizing hormone (LH) suppressing effects of several pro-inflammatory cytokines revealed that centrally administered IL-1 beta was the most potent inhibitor of pituitary LH secretion; interleukin (IL)-1 alpha and tumor necrosis factor (TNF) alpha were relatively less effective, whereas IL-6 was ineffective. This order of potency suggested that the anti-gonadotropic effects of an immune challenge are most likely attributable to the action of centrally released IL-1 beta, and this was supported by the demonstration that IL-1 beta suppressed hypothalamic luteinizing hormone releasing hormone (LHRH) release. We used a multifaceted approach to identify the afferent signals in the brain that convey immune messages to hypothalamic LHRH neurons. Pharmacological studies with specific antagonists of opioid receptor subtypes demonstrated that activation of the mu 1 receptor subtype was required to transmit the cytokine signal. Furthermore, icv IL-1 beta upregulated hypothalamic POMC mRNA and increased the concentration and release of beta-endorphin, the primary ligand of mu 1 receptors. We have obtained evidence that IL-1 beta also enhanced the gene expression and concentration of tachykinins, a family of nociceptive neuropeptides in the hypothalamus. Blockade of tachykinergic NK2 receptors attenuated IL-1 beta induced inhibition of LH secretion. Collectively, these results demonstrate that IL-1 beta, generated centrally in response to inflammation, upregulates the opioid and tachykinin peptides in the hypothalamus. These two groups of neuropeptides are critically involved in relaying the cytokine signal to neuroendocrine neurons and causing the suppression of hypothalamic LHRH and pituitary LH release.  相似文献   

13.
The effects of intravenous (iv) administration of the opioid antagonists naloxone and naltrexone on the restraint-induced suppression of the pro-estrous LH surge were studied in cyclic female rats. To minimize stress during repeated blood sampling, the rats were provided with a jugular vein cannula. Restraint stress for 6 hrs starting at t = -1 h (the onset of the LH surge being at t = 0 h) caused a suppression of LH levels (including peak height) during the period of the LH surge. Repeated naloxone injections, given 3 h (1 mg), 4 h (0.5 mg) and 5 h (0.5 mg) after the onset of the LH surge, did not affect the restraint-induced inhibition neither did pretreatment with 1 mg naloxone at t = -75 min (i.e. 15 min before application of restraint). Naltrexone (2 mg) administered at t = -15 min induced higher plasma LH levels at t = -6 min. When rats were subsequently subjected to restraint for 5 hrs starting at t = -5 min, the restraint-induced inhibition of surge levels of LH was not affected. The results indicate that withdrawal of opioid activity in cyclic female rats before the presumed onset of the LH surge results in a premature rise of LH levels. This is in accordance with the notion that LH levels prior to the surge are under tonic inhibition of endogenous opioid peptides (EOP). In addition, the data show that opioid receptor antagonism during or before application of restraint does not alter the restraint-induced suppression of the LH surge. It is therefore concluded that EOP do not mediate the inhibitory effect of restraint stress on the LH surge in cyclic rats.  相似文献   

14.
Administration of progesterone eugonadal women during the midfollicular phase of the menstrual cycle failed to induce a positive feedback effect on the serum concentrations of LH and FSH. The levels of estradiol in serum decreased following the injection of progesterone without a parallel change in LH and FSH concentrations indicating a direct ovarian effect of the exogenous progesterone. In the late follicular phase of the cycle, when preovulatory levels of estradiol were present in serum, or under a ethinyl estradiol treatment progesterone was able to induce an LH discharge indicating the requirement of an estradiol priming of the positive feedback of progesterone in eugonadal women. In order to establish the time required for a sufficient estrogen priming with preovulatory levels of estradiol in serum 3 mg of estradiol-benzoate were administered i.m. 1, 12 and 24 h prior to the administration of 30 mg of microcristalline progesterone in the midfollicular phase of the menstrual cycle, when progesterone alone did not cause an LH surge. Only when estradiol-benzoate was injected 24 h prior to the progesterone administration an LH surge reproducible in time course and magnitude occurred. Administration of estradiol-benzoate alone under these conditions did not cause an LH surge within the elapse of time after the injection when the progesterone induced LH surge occurred. Thus, these experiments demonstrate that a defined estrogen priming is required for the positive feedback effect of progesterone on the gonadotropin release in eugonadal women. Furthermore, progesterone levels in serum of about only 1--2 ng/ml were required for the induction of an LH surge indicating that under physiological conditions progesterone may have an supplementory effect on the primarily estradiol induced LH midcycle peak. 17-hydroxyprogesterone administered during the mid follicular phase of the menstrual cycle and under pretreatment with ethinyl estradiol failed to induce a positive feedback effect on the serum concentrations of LH and FSH, indicating that this steroid does not play a regulatory role on the midcycle LH release in women. 20alpha-dihydroprogesterone administered under the same experimental conditions as 17-hydroxyprogesterone seems to be able to induce an LH surge in serum provided there is an adequate estrogen priming.  相似文献   

15.
Opioid dependence is widely believed to result from neuroadaptations in specific brain regions. However, the precise molecular mechanisms underlying these adaptations are not yet clear. Our aim was to explore the role of mitogen-activated protein kinase (MAPK) in mu opioid receptor signalling in vivo. Using anti-phospho MAPK antibodies, activated MAPK was detected in cortical neurons (layers II/III), median eminence, amygdaloid and hypothalamic nuclei in untreated animals. Dense nuclear and cytoplasmic staining was observed resulting in full visualization of processes in these cells. Chronic, but not acute, administration of morphine greatly diminished this staining pattern while mu opioid receptor levels and levels of MAP kinase as detected with a phosphorylation state-independent antibody were unchanged. When opioid withdrawal was precipitated with naloxone a dramatic increase in MAP kinase phosphorylation was observed in somata and fibres of locus coeruleus, solitary tract and hypothalamic neurons. Thus, the differential activation state of MAPK could have important implications for understanding the mechanisms underlying opioid tolerance and dependence.  相似文献   

16.
Ovulation was delayed for 24 h after the administration of sodium pentobarbitone (Nembutal, 35 mg/kg body weight) at 14.00 h, before the critical period on the afternoon of pro-oestrus. The expected preovulatory surge of serum LH at 18.00 h of pro-oestrus was also delayed until 21.00 h on the following day; however, increased levels (less than 12 ng/ml) were observed in 14 out of 23 animals (killed by decapitation) at 21.00 h on the day of Nembutal administration. The serum FSH rise observed on the morning of expected oestrus was extended after Nembutal treatment, and a further rise was noted 24 h later. Peak levels of incorporation of 35S from methionine into protein of the median eminence area (ME) and of the anterior pituitary (AP) which normally occur about the time of the preovulatory LH surge, were also delayed until 21.00 h on the day following Nembutal administration. Neither ovulation nor the preovulatory gonadotropin rises with their accompanying changes in incorporation in the ME and the AP, were altered by Nembutal administered after the pro-oestrous critical period. Thus Nembutal, while blocking ovulation, inhibits the circadian rhythm of incorporation of 35S from methionine in the brain as well as the peaks of incorporation in the median eminence and the anterior pituitary which accompany the normal preovulatory surges of gonadotrophin.  相似文献   

17.
The preovulatory LH surge in the ewe is stimulated by a large sustained surge of GnRH. We have previously demonstrated that the duration of this GnRH signal exceeds that necessary to initiate and sustain the LH surge. The objective of the present study was to determine whether a similar excess exists for amplitude of the GnRH surge. Experiments were performed using an animal model in which GnRH secretion was blocked by progesterone, which in itself does not block the pituitary response to GnRH. To assess the amplitude of the GnRH surge needed to induce the LH surge, we introduced artificial GnRH surges of normal contour and duration but varying amplitudes. Twelve ewes were run through 3 successive artificial follicular phases (total of 36). Six of these artificial follicular phases were positive controls, in which progesterone was removed, the estradiol stimulus was provided, and vehicle was infused. In these control cycles, animals generated endogenous LH surges. In the remaining artificial follicular phases, progesterone was not withdrawn, the estradiol stimulus was provided, and either vehicle (negative control) or GnRH solutions of varying concentrations (experimental) were infused. The circulating GnRH concentrations achieved by infusion were monitored. No LH surges were observed in negative controls, whereas LH surges were induced in experimental cycles provided a sufficient dose of GnRH was infused. A highly significant dose-response relationship was observed between the amplitude of the GnRH surge and both the amplitude of the LH surge and the area under the curve describing the LH response, but no such relationship existed between the amplitude of the GnRH surge and the duration of the LH response. In numerous cases, LH surges similar to those in the positive control animals resulted from infusion of amounts of GnRH estimated to be considerably less than those delivered to the pituitary during the endogenously generated GnRH/LH surge. These findings indicate that, in the ewe, increased GnRH secretion drives the preovulatory LH surge in a dose-dependent fashion, and they provide evidence that the amplitude of the GnRH surge may exceed that needed to generate the LH surge.  相似文献   

18.
Using a combination of radioactive and non-radioactive in situ hybridizations, the expression of mu and kappa opioid receptor mRNA was investigated in neurons in the female rat preoptic nucleus expressing galanin and gonadotropin-releasing hormone (GnRH) mRNA. Numerous cells expressing both mu or kappa and galanin were found in the intermediate and rostral regions of the preoptic area whereas little co-localization was observed at the rostral level. The number of kappa/galanin expressing cells was greater than that of mu/galanin cells. mu/galanin co-localization was observed essentially in the anteroventral preoptic nucleus while neurons expressing kappa/galanin were present in both the anteroventral preoptic nucleus and in the periventricular hypothalamic nucleus. Co-localization of GnRH with mu or kappa could not be detected in the preoptic area. These observations showed that galaninergic neurons but not GnRH neurons of the preoptic area might be directly regulated by endogenous opioid peptides.  相似文献   

19.
Preovulatory follicles were explanted on the day before ovulation from immature rats given a single injection of Pregnant Mare's Serum gonadotropin (PMS) 2 days earlier. The follicles were incubated for 4 h in modified Krebs bicarbonate buffer containing glucose and albumin in absence or presence of ovine luteinizing hormone (NIH-LH-S18; 0.1-10 mug/ml). The accumulation of progresterone, androstenedione and 17beta-estradiol in the medium was determined by radioimmunoassay. As in indicator of LH exposure the meiotic stage of the follicle-enclosed oocyte was determined at recovery by interference contrast microscopy. The first group of follicles were explanted in the morning, before the endogenous gonadotrophin surge. In hormone-free medium the oocytes remained in the dictyate stage, whereas addition of LH induced oocyte maturation. These follicles, when incubated in hormone-free medium, secreted predominantly androstenedione and estradiol and only low amounts of progesterone. In the presence of LH the secretion of all steroids was enhanced. The second group of follicles were explanted in the evening, 2-4 h after the endogenous gonadotrophin surge. After incubation in hormone-free medium the follicle-enclosed oocytes had matured. The steroid secretion by the follicles was different from that of the first group. In hormone-free medium they secreted predominantly progesterone and low amounts of androstenedione and estradiol. Addition of LH to the medium caused further enhancement of progesterone secretion, but had no effect on androstenedione and estradiol secretion. The third group of follicles were explanted in the evening from rats in which the preovulatory gonadotrophin surge had been prevented by Nembutal treatment. Oocyte maturation and steroid secretion did not differ from that found for the first group of follicles explanted in the morning. The results are compatible with the hypothesis that LH, after a transitory stimulation, inhibits androgen and estrogen secretion and stimulates progesterone secretion by the preovulatory ovarian follicle.  相似文献   

20.
Neuropeptide Y (NPY) has been shown to potentiate the actions of LHRH during the generation of preovulatory LH surges. It is not yet known, however, if activation of a specific subtype of NPY receptors in the anterior pituitary gland is an obligatory event in the stimulation of spontaneous LH surges. A battery of NPY receptor agonists, as well as the specific NPY Y1 receptor antagonist BIBP3226, were used to assess the role of Y1 receptors in the amplification of LH surges. In Exp 1, the potencies of a number of NPY agonists in facilitating LHRH-induced LH surges were assessed in pentobarbital (PB)-blocked, proestrous rats. The rank-ordered potencies of these compounds were determined to be PYY = [Leu31Pro34]NPY > NPY > hPP = rPP = NPY(13-36), which most closely reproduces the known rank-ordered affinties of these compounds for the Y1 receptor. In Exp 2, a Y1 subtype- specific antagonist, BIBP3226, was administered to unanesthetized, proestrous rats to assess the involvement of the Y1 receptor in the stimulation of spontaneous LH surges. The BIBP3226 compound strongly attenuated the endogenous proestrous LH surge, reducing the integrated value of LH secretion during the proestrous surge by more than 70%. In Exp 3, we assessed the ability of the Y1 receptor antagonist to block exogenous NPY effects on LHRH-induced LH surges. Treatment with BIBP3226 was found to completely prevent NPY amplification of LHRH-induced LH surges in pentobarbital-blocked, proestrous rats, thus confirming a pituitary locus of action of the drug. Taken together, these data clearly demonstrate that activation of neuropeptide Y receptors of the Y1 subtype is required for the physiological amplification of the spontaneous preovulatory LH surge in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号