共查询到19条相似文献,搜索用时 67 毫秒
1.
2.
变压器振动信号是评估其工作状态的重要参数之一,与绕组松动或变形等隐患密切相关,为揭示变压器振动信号的变化趋势,本文提出了一种基于广义回归神经网络和马尔科夫链修正的变压器振动信号预测方法。即分别以变压器运行电压、负载电流和振动信号归一化特征频率为输入和输出建立变压器振动信号广义回归神经网络预测模型,然后引入马尔科夫链并结合负载电流的变化对振动信号计算结果进行修正以获得最终的预测结果。对某500 kV变压器振动在线监测信号的分析结果表明:经马尔科夫链修正后的变压器广义回归神经网络振动信号预测模型预测精度高,可为变压器绕组运行状态的振动监测技术提供重要参考。 相似文献
3.
4.
研究了月度负荷的特性,指出了其季节波动性和趋势增长性双重特性;介绍了广义回归神经网络的基本理论,提出以横向历史数据和纵向历史数据作为输入神经元,建立了月度负荷预测模型,并将其应用于我国某地区月度负荷预测,结果表明:该模型的预测精度明显高于一般的BP网络。 相似文献
5.
6.
7.
提出了基于改进广义回归神经网络(GRNN)的日负荷曲线预测模型。对GRNN模型的输入元素进行分析筛选,并同时输出一天48点的负荷预测值,在保证预测精度的基础上大大提高了预测速度。采用烟台某变电站实际负荷进行预测分析,结果证明了该方法的有效性。 相似文献
8.
9.
运用广义回归神经网络对风电场出力提前了24 h预测。对引入数值气象预报信息与不引入数值气象预报信息两种情况的预测结果进行了比较分析。首先,对前15 d的风功率数据进行训练,通过交叉验证,建立模型,预测了未来一天的风电场出力。然后加入历史风速数据,对历史风速和风功率进行训练,利用数值气象预报信息,预测未来1 d的风功率。通过算例表明,使用广义回归神经网络模型预测未来1 d的风电场出力,预测结果能够跟踪实际风功率,同时加入数值气象预报信息的预测结果较不加入数值气象预报信息的神经网络预测,精度有所提高。 相似文献
10.
为解决电力变压器振动信号因非平稳特性而导致难以预测的问题,提出一种基于改进蜣螂优化算法的差分整合移动平
均自回归预测模型。 首先,利用 ADF 检验和 KPSS 检验对变压器原始振动信号进行平稳性检验,若不平稳则进行差分处理直至
信号平稳。 其次,通过在蜣螂优化算法中引入周期突变机制以提升算法的寻优能力,并利用改进后的蜣螂优化算法对差分整合
移动平均自回归模型参数 p 和 q 进行定阶,实现对变压器振动信号的预测。 最后,利用某个 0. 4- / 0. 4-kV,15-kVA 三相双绕组
干式变压器实际采集的振动数据,验证所提出模型的有效性。 仿真结果表明,该模型的平均绝对百分比误差可达 3. 77%,而差
分整合移动平均自回归模型、长短时记忆网络、循环神经网络和卷积神经网络的平均绝对百分比误差分别为 5. 34%、4. 74%、
5. 03%、5. 40%。 因此,所提出的模型可以实现变压器振动信号的精准预测。 相似文献
11.
广义回归神经网络在变压器绕组热点温度预测中的应用 总被引:3,自引:1,他引:3
电力变压器的绕组热点温度是影响其绝缘性能的主要因素之一,因此有必要进行电力变压器绕组热点温度预测以提高电力变压器的运行可靠性。变压器内部温度受诸多因素的影响,且计算涉及到传热学、流体力学和电磁学等边缘学科,以致其计算复杂,不宜使用。广义回归神经网络(GRNN)具有较强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性等特点,将其应用于变压器绕组热点温度的预测,克服了基于误差反向传播算法的人工神经网络(BPNN)预测时训练过程中存在局部最小点、收敛速度慢等缺点。将预测结果与实测值进行对比,结果表明GRNN神经网络的预测结果与实测值具有较好的一致性。 相似文献
12.
13.
介绍了BP神经网络模型和算法,建立了变压器绕组温度预测的人工神经元网络BP模型,并验证了其可行性和优越性. 相似文献
14.
15.
监测电力变压器的振动与噪声特性是及时发现电力变压器故障隐患的重要手段之一。为此,设计了500kV单相电力变压器振动与噪声的同步在线监测方案,通过振动与噪声传感器及相应的数据采集和分析系统实现了对广东惠州500kV变电站单相电力变压器的振动与噪声的实时监测,并监测得到了500kV单相电力变压器几个典型位置的振动与噪声的时域波形数据。分析结果表明500kV单相电力变压器振动与噪声信号的频率范围为100~1000Hz且在200~500Hz范围内表现最为明显,同时由电力变压器振动与噪声同步变化的特点确定了其振动与噪声之间的关联性,验证了电力变压器振动与噪声同步在线监测的可行性。 相似文献
16.
神经网络已广泛应用于设备的故障诊断中.鉴于神经网络的性能和诊断能力与网络的拓扑结构和学习算法有着密切的联系,本文研究并实现了在故障诊断应用中能进行自构形的神经网络模型,改善了全局收敛性和节点总体饱和度,并较好地应用于变压器故障诊断实践中. 相似文献
17.
18.
19.
深度学习神经网络在电力变压器故障诊断中的应用 总被引:1,自引:0,他引:1
由于电力变压器发生故障时油色谱在线监测数据无标签,工程现场往往会得到大量无标签故障样本,而传统的故障诊断方法在对变压器故障类型进行判别时往往无法充分利用这些无标签故障样本。该文基于深度学习神经网络(deep learning neural network,DLNN),构建了相应的分类模型,分析并用典型数据集对其分类性能进行测试。在此基础上提出一种电力变压器故障诊断新方法,它能够有效利用大量电力变压器油色谱在线监测无标签数据和少量故障电力变压器油中溶解气体分析(dissolved gas-in-oil analysis,DGA)实验数据进行训练,并以概率形式给出故障诊断结果,具有更优的故障判别性能,能够为变压器的检修提供更为准确的参考信息。工程实例测试结果表明,该方法正确可行,诊断性能优于三比值、BP神经网络和支持向量机的方法,适用于电力变压器的故障诊断。 相似文献