首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seismic analysis of underground structures requires a careful consideration of the important effect of shear strains in the soil due to vertically propagating horizontal shear waves. These strains result in ovaling deformations of circular tunnels or racking deformations of rectangular tunnels. Closed-form solutions as well as numerical analyses are used to characterize this soil-structure interaction problem. Many of these solutions assume full normal contact at the interface between the soil and tunnel lining. This work describes a numerical finite element study of soil-circular tunnel lining interaction with contact conditions that allow both limited slippage and separation to prevent development of potentially unrealistic normal tensile and tangential forces at the interface. The analyses highlight the significant limitations of widely used closed-form solutions in engineering practice. The finite element solutions demonstrate the need for realistic representation of the soil-tunnel interaction using numerical modeling approaches.  相似文献   

2.
Response of tunnels to earthquake induced loads is a complex dynamic soil-structure interaction problem. While there seems to be a general consensus that tunnels in rock perform adequately during earthquake events, the seismic performance of shallow tunnels in soils is less certain. More experimental and field data is needed to better understand the dynamic tunnel-soil interaction. In this paper, the behaviour of relatively shallow tunnels of square cross-section located in a sand deposit is investigated using dynamic centrifuge modelling and complimentary Finite Element analysis. Emphasis is given on the effect of tunnel axis depth on the seismic response of square tunnels. Dynamic centrifuge tests were carried out on model tunnels at different depths of embedment. Accelerations around the tunnel and earth pressures on the linings were measured. Tunnel deformations were also recorded using a fast digital camera. Particle Image Velocimetry (PIV) analyses were conducted to measure soil and lining deformations. Results show that for the cases investigated, the depth of the tunnel does not effect the deformation pattern of the tunnel significantly during an earthquake event; however it affects the amount of amplification of accelerations through the tunnel, the magnitude of dynamic earth pressures and the magnitude of the lining forces.  相似文献   

3.
内源爆炸荷载作用下隧道的动力响应,经常被简化为以爆源为中心的二维平面应变问题,其实际上是一个三维岩土工程问题。为评价隧道爆源及周围区域的爆炸破坏,采用Laplace和Fourier变换,提出一种在内源爆炸荷载作用下,饱和土体中圆形衬砌隧道的瞬态响应精确解答。基于Biot波动理论,将周围土体和衬砌结构分别看成饱和两相介质和弹性介质,推求了Laplace和Fourier变换域内爆炸荷载作用下衬砌和周围饱和土体的动力响应解析解。利用Laplace和Fourier反变换的数值方法,进行了爆炸荷载作用下衬砌和周围土体的动力响应数值分析。结果表明:与简化的二维平面应变模型相比,基于三维模型得到的切向应力、径向位移和孔隙水压力较小;隧道的动力响应随时间而迅速减小,并随着与爆源距离的增加,而在径向和轴向上呈指数衰减。  相似文献   

4.
饱和砂土地层中的地下结构在地震作用下可能因地基液化而发生破坏。采用动力固结两相体有限元程序DIANA SWANDYNE-II对可液化地层中地铁隧道结构的地震响应进行了模拟,并与动力离心模型试验结果对比以验证其效果。选用广义塑性模型Pastor-Zienkiewicz III模拟可液化土的动力特性,基于Biot方程的u–p形式建立有限元方程,进行饱和土动力固结的耦合计算。计算表明,该数值模型可较合理地模拟地下结构的地震反应特性,计算结果与试验现象基本相符。地基液化引起的结构附加内力及隧道上浮主要受地基液化时土水压力变化的影响,截断墙的设置可有效减轻隧道结构的上浮。  相似文献   

5.
The support of underground structures must be designed to withstand static overburden loads as well as seismic loads. New analytical solutions for a deep tunnel in a saturated poroelastic ground have been obtained for static and seismic loading. The static solution accounts for drainage and no-drainage conditions at the ground–liner interface. Linear elasticity of the liner and ground, and plane strain conditions at any cross-section of the tunnel are assumed. For tunnels in which ground stresses and pore pressures are applied far from the tunnel center, the drainage conditions at the ground–liner interface do not affect the stresses in the liner. The analytical solution shows that the stresses in the liner are exactly the same whether there is drainage or not at the ground–liner interface. Hence, if the drainage conditions in the tunnel are changed from full drainage to no-drainage or vice versa the stresses in the liner are not affected. However, the stresses and displacements in the ground change significantly from drainage to no-drainage conditions. For seismic loading a new analytical formulation is presented which provides the complete solution for the ground and the liner system for both dry and saturated ground conditions. The formulation is based on quasi-static seismic loading and elastic ground response; for a saturated ground, undrained conditions are assumed which indicate that the excess pore pressures generated during the seismic event do not dissipate. The results show that the racking deformations of a liner in dry or saturated ground are highly dependent on the flexibility of the liner.  相似文献   

6.
This paper reports numerical modeling of the prototype geosynthetic reinforced soil (GRS) walls corresponding to four centrifuge models that have different toe restraint conditions. The development of the interface stresses and displacements at wall toe during wall construction is investigated to understand how the toe carries load in the GRS walls with a practical toe structure. The numerical results show good agreement with the data from the centrifuge modeling. For the GRS walls with a leveling pad embedded in foundation soil, the shear resistance at the facing block-leveling pad interface acts as the toe resistance to counterbalance a portion of horizontal earth load, while the leveling pad-foundation soil interface play no role in wall performance because the soil passive resistance in front of the leveling pad inhibits the development of the shear stress and displacement on this interface. For the GRS walls with an exposed leveling pad, it is the leveling pad-foundation soil interface that works for carrying the earth load because the wall is more likely to slide along this weaker interface. The contribution of the toe to load capacity depends on the shear strength of the effective toe interface that contributes to the resistance against the earth load.  相似文献   

7.
The paper describes observed behaviour of a model tunnel embedded in dry sand subjected to cyclic ground shear deformation in a centrifuge, as well as the behaviour of the model ground during shear deformation. Detailed data on earth pressures acting on the tunnel lining and the sectional forces of the lining are presented during ground shear deformation. The data suggest that the earth pressure at tunnel crown before ground shear deformation is smaller than the full overburden pressure probably due to the formation of arch action and the arch action may deteriorate with the cyclic ground shear deformation, resulting in an increase in the earth pressure at crown and changing the distribution of the sectional forces, which are largely influenced by conditions between tunnel lining and invert.  相似文献   

8.
相对刚度对圆形隧道结构地震反应影响规律的研究   总被引:1,自引:0,他引:1  
隧道结构与周围地层的相对刚度是两者之间相互作用的根本,本文针对圆形隧道,采用动力有限元方法分别讨论了土质条件(剪切波速)、衬砌厚度、衬砌直径等参数对结构地震反应的影响规律。然后引入柔度比的概念来综合考虑上述因素的影响。计算结果显示:柔度比越大,隧道结构的地震内力反应越小,并且对计算结果进行拟合得到衬砌内力与柔度比的函数关系,可以作为隧道结构抗震分析、设计的参考。  相似文献   

9.
Combining the wave function expansion method and conformal transformation method, the dynamic stress around a non-circular tunnel with imperfect interface subjected to anti-plane shear waves is derived. The non-circular tunnel is mapped into an annular region, and the analytic solutions of stress and displacement solutions are expanded in terms of wave functions. By introducing the spring-type interface model, the coefficients are determined by satisfying the imperfect bonding conditions around the concrete lining. The distribution of tangential stresses on the imperfect interface is graphically illustrated, and the interacting effect of imperfect interface and incident wavelength is discussed in detail. The imperfect interface is revealed as a key factor dominating the seismic responses of a tunnel.  相似文献   

10.
Although soil-lining interaction is highly dependent on the tunnelling technology used, most of the available design methods for tunnel linings fail to take into consideration this important factor. During tunnel excavation, the in-situ stresses are significantly altered, depending on the tunnelling technique as well as the configuration of the tunnel and the characteristics of the soil deposits. The reduced radial stresses are the starting point of the soil-lining interaction at lining activation. This paper presents a method of lining design that considers the details of the excavation procedure and lining installation. Interaction between the tunnel lining and the ground is analysed in two stages—excavation and interaction. The excavation stage is responsible for determining the pre-lining soil deformations and the reduced in-situ stresses. The interaction stage models the soil-lining system together. Soil continuum, tunnel lining, and the interface between them are idealized in the whole system using nonlinear finite-element techniques. The deformations of the soil-lining system, as well as the lining internal forces, and equilibrium soil pressures are determined. Finally, results of the proposed analytical method as well as commonly used procedures are compared with field measurements compiled during the construction of two tunnels in which a precast segmental lining and rib and lagging lining were used.  相似文献   

11.
 通过动力分析和振动台模型试验相结合的方法,研究穿越断层破碎带隧道在地震作用下沿纵向的动力响应特性,当隧道位于围岩与断层破碎带接触面附近时,衬砌地震内力和应力急剧增大;当隧道断面沿纵向远离断层破碎带一定距离后,衬砌地震内力和应力逐渐趋于一个稳定值。研究表明:断层与隧道轴线夹角为35°~90°时,穿越断层破碎带隧道合理抗震设防长度为隧道跨度的3.5倍,该研究成果可为隧道工程抗震设防提供参考。  相似文献   

12.
开展了干砂地层中基坑开挖对旁侧隧道影响及隔断墙保护作用的三维离心模型试验和数值分析,获得了隧道上浮、隧道内力、隧道周围土压力、地表沉降等变化规律以及隧道空间位置和基坑开挖深度的影响。试验结果表明,基坑回弹量与采用Boussinesq解计算的回弹量比较接近;地表沉降量与文献报道的试验结果相近,而明显小于现场实测沉降;靠近基坑一侧的隧道周围土压力有所减小,而远离基坑一侧的隧道周围土压力则有所增加。隔断墙的设置可以一定程度上减小地表沉降、隧道外土压力变化、围护墙水平位移以及隧道上浮和弯矩。数值计算结果表明,隧道上浮量和水平位移随着隧道埋深及其与围护墙距离的增大而减小,而随着基坑开挖深度的增大而增大。  相似文献   

13.
Collision accidents between errant vehicles and tunnels occur frequently, causing serious loss of life and property as well as the damage to the tunnel lining. Damage analysis of the tunnel lining under collision loads is still a lack of research at present. Based on dynamic finite element method, this study simulates and analyzes the interaction between errant large vehicles and tunnel lining structure and their dynamic response processes under various collision cases. It is noted that the lining structure mainly suffers tensile damage and its value increases with the increases of the collision angle and the vehicle speed. The larger the vehicle speed and the collision angle are, the bigger accelerations the passengers experience. A series of in-situ damage detections and sampling tests of the tunnel lining in a real collision accident that occurred in the Panlong Tunnel on Jinghu Highway in China in 2009 strongly approve the numerical simulation results. This study provides technical supports to the optimal design and operations management of tunnels.  相似文献   

14.
液化场地浅埋钢筋混凝土结构物变形及 动土压力分析   总被引:1,自引:1,他引:0  
 基于多重剪切机构塑性模型和液化前缘面的有效应力分析方法,分析不同地震强度下液化场地中浅埋大断面矩形钢筋混凝土结构物变形与地震动土压力分布特征,进而探索0.85 g输入地震波条件下结构物与液化土间的相对位移差、结构物侧壁和顶底板土体的动土压力、剪切应力、有效应力和超孔隙水压力的变化规律。研究得出结构物的最大变形、弯矩和曲率值随着地震强度的加大而增大,结构物最先发生屈服变形部位位于拐角处,并逐步向周围扩展;场地发生液化模型中的结构物–液化土相互作用系数数值小于场地未发生液化模型,结构物与土体间的相对位移差值随着场地液化而剧增到一定值;作用于结构物侧壁的动土压力最大值和震后值随地震强度加大而增加,但不是简单的线性增长;结构物侧壁动土压力随着振动持续而增长,而作用于顶底板土层的剪切应力和侧壁有效应力随着土体液化而剧减。研究结论可为液化场地浅埋结构物的抗震设计提供可靠的依据和参考。  相似文献   

15.
A method to cover a tunnel lining with a soft and thin coating is discussed herein as a possible measure for mitigating seismic damage to tunnels. Long-term earthquake observations at different tunnel sites within a variety of alluvial soil deposits have demonstrated that a circular tunnel is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately. Narrowing down vibration modes for discussion to this particular and the most important mode, any of the essential items of the soil-tunnel system—namely the soil, the coating and the tunneling lining—had only one degree of freedom, allowing the isolation effect to be simply evaluated in terms of a limited number of key parameters.  相似文献   

16.
盾构隧道的装配式管片是其显著的结构特点,目前的抗震研究主要采用简化方法,少有能有效反映管片和接头细部特征的动力反应分析方法,对其在可液化场地中的地震响应规律也需要进一步研究。本文建立了一种精细化装配式管片结构计算模型,并基于砂土液化大变形统一本构模型,采用弹塑性有限元动力时程分析,分析了盾构隧道在可液化场地中的地震响应特征及规律。结果表明接头处响应是盾构隧道抗震的重要考虑因素。装配式管片结构相比于整体式结构柔度更大,受力较小,变形较大。在可液化场地中盾构隧道由于水平向作用力显著增加,在水平向被挤压,受力分布和抗震不利位置相比非液化场地有明显区别。  相似文献   

17.
软土地层中双圆盾构法隧道的抗震分析   总被引:6,自引:2,他引:4  
目前对于上海双圆盾构法隧道的抗震问题 ,尚没有成熟的方法可供利用。本文结合上海地区典型软土室内动力试验研究成果 ,采用考虑土 -结构相互作用的软土地层中地下建筑物抗震稳定分析方法 ,研究了隧道 -土体体系二维地震反应 ,并应用梁单元有限元模型研究了隧道的纵向地震反应。计算结果包括 :地震引起的隧道周围软土孔隙水应力比、震陷、动剪应力比 ,以及隧道结构的动剪应力、轴力、剪力、弯矩等。最终从地震影响角度对该隧道的优劣作了初步评价 ,为工程决策提供了重要参考依据 ,所得结论可为软土隧道抗震设计提供参考依据。  相似文献   

18.
运用ADINA软件中的Newmark直接积分法和Mohr-Coulomb弹塑性模型,计算了交叉隧道运行期,在不同地震动波和不同方向地震激励作用下,隧道顶部不同覆土厚度时动力响应规律;分析了衬砌厚度变化对隧道地震反应的影响。计算结果表明:垂直于隧道轴线方向的地震波对隧道结构影响最大,对于立体交叉隧道最大位移、最大加速度一般发生在上部隧道顶板中间位置处,而最大主压应力一般出现在隧道顶板与边墙连接处,这些部位是结构安全的关键点,设计时应重点关注;随着隧道顶部覆土厚度的增加结构相对位移、加速度和应力都有所增加,且位移和应力变化比加速度大,当覆土厚度增加到一定程度时,响应将基本趋于稳定;随着衬砌厚度的增加结构最大相对位移和应力逐渐减小,而加速度将逐渐增大,但减小和增大幅值随衬砌厚度增加而越来越小。  相似文献   

19.
昆明东外环下穿隧道工程是昆明南火车站枢纽工程中的一个重大项目,在勘察过程中发现K2+100~K2+200隧段含两层粉土层,且其中一层紧靠隧道设计底板。由于该工程处于高地震烈度区,在地震作用下粉土极易发生液化,直接影响到上部隧道结构的稳定。针对该工程实例,利用FLAC~(3D)软件开展了高地震烈度区粉土地基抗液化及不同隧道衬砌混凝土强度等级与衬砌厚度等条件下的隧道抗震研究。计算结果表明,在设计地震动加速度为0.2 g的条件下,该工程粉土地基超孔压比约为0.2,粉土地基不会发生液化;随着衬砌厚度的增加,衬砌弯矩和剪力总体呈现增长趋势,而混凝土强度等级的变化对衬砌的受力影响很小。分析结果初步揭示了可液化土中隧道结构的抗震特性,可为设计所参考。  相似文献   

20.
列车振动荷载作用下隧道衬砌结构动力响应特性分析   总被引:6,自引:1,他引:6  
论述隧道衬砌结构动力有限元分析的理论与数值计算方法,并以京广线朱亭隧道列车振动荷载现场测试成果为基础,通过对3种不同断面形状的隧道衬砌结构的动力响应特征进行分析研究,可获得隧道衬砌结构竖向位移、竖向加速度及各种内力时程曲线。研究成果对评价既有提速铁路隧道衬砌结构的动力稳定性和完善铁路隧道结构的设计理论具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号