共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Froude similarity law, a small-scale tunnel model (1/14) was built based in this study to investigate critical velocities of tunnels. Critical velocity is the minimum air velocity required to resist the spread of smoke from a fire upstream in a tunnel. A set of experiments was conducted to investigate the critical velocities under different experimental conditions by varying the heat release rate of the fire, ambient temperature, operating pressure and arrangement of the nozzles. The results of the tests with no spray indicated that the ambient temperature has little impact on the critical velocity. Moreover, based on the dimensionless analysis method, a new correlation was established to predict the critical velocities in the tunnel without Water spray-based Fixed Fire Fighting Systems (WFFFS). The accuracy of the correlation was illustrated by the results of the present tests and a number of tests on different scales published by other scholars. Furthermore, 60 tests with WFFFS activation were carried out. The results show that the critical velocity is significantly reduced after the water spray discharged from the nozzles. The maximum reduction of the critical velocity is approximately 31%. The reduction of the critical velocity strongly depends on the number, positions and operating pressures of the nozzles. The mechanisms of the reduction of the critical velocity caused by spraying were discussed. The cooling effect of the water droplets on hot gas is not the only mechanism for decreasing the critical velocity caused by spraying. Spraying increases the inertial force of the longitudinal airflow and is the other mechanism for the reduction. 相似文献
2.
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. PRACTICAL IMPLICATIONS: We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. 相似文献
4.
This paper studies water mist fire suppression under different longitudinal ventilation velocities in tunnels by small-scale experiments. After a scaling study, two mist nozzles are used for suppressing crib fires under 5 ventilation speeds. The result comes out that fire suppression process can be divided into three stages including flame unitary restraining stage, surface flame extinguishing stage and inside flame suppression stage. Several factors influencing efficiency are investigated. When the interval between mist nozzle and fire source enlarges, the relationship curve between fire suppression time and ventilation velocity shows a ‘V’ figure. The best ventilation speed exists. Following the rules summarized, a coupling system of water mist and ventilation may increase fire suppression efficiency remarkably. 相似文献
5.
Natural ventilation, which is in line with the concepts of sustainability and green energy, is widely acknowledged nowadays. Prevailing winds in urban areas are unavoidably modified by the increasing number of closely placed high-rise buildings that significantly modify the natural ventilation behaviour. This paper explores the effects of building interference on natural ventilation using computational fluid dynamics (CFD) techniques. The cross-ventilation rate (temporal-average volumetric airflow rate) of hypothetical apartments in a building cluster under isothermal conditions was examined using the standard two-equation k − ? turbulence model. The sensitivity of ventilation rate to wind direction, building separation and building disposition (building shift) was studied. Placing buildings farther away from one another substantially promoted the ventilation rate, cancelling the unfavourable interference eventually when the building separation was about five times the building width (the optimum separation). The characteristic flow pattern leading to this behaviour was revealed. With the adoption of building disposition, the optimum separation could be reduced to three times the building width. In addition, the airflow rates could be doubled with suitable shifts. Building disposition is therefore one of the feasible solutions to improve the natural ventilation performance in our crowded environment. 相似文献
6.
Wind tunnel experiments and Computational Fluid Dynamics (CFD) are used to analyse the flow conditions in a venturi-shaped roof, with focus on the underpressure in the narrowest roof section (contraction). This underpressure can be used to partly or completely drive the natural ventilation of the building zones. The wind tunnel experiments are performed in an atmospheric boundary layer wind tunnel at scale 1:100. The 3D CFD simulations are performed with steady RANS and the RNG k-? model. The purpose of this study is twofold: (1) to evaluate the accuracy of steady RANS and the RNG k-? model for this application and (2) to assess the magnitude of the underpressures generated with different design configurations of the venturi-shaped roof. The CFD simulations of mean wind speed and surface pressures inside the roof are generally in good agreement (10–20%) with the wind tunnel measurements. The study shows that for the configuration without guiding vanes, large negative pressure coefficients are obtained, down to −1.35, with reference to the free-stream wind speed at roof height. The comparison of design configurations with and without guiding vanes shows an – at least at first sight – counter-intuitive result: adding guiding vanes strongly decreases the absolute value of the underpressure. The reason is that the presence of the guiding vanes increases the flow resistance inside the roof and causes more wind to flow over and around the roof, and less wind through it (wind-blocking). As a result, the optimum configuration is the one without guiding vanes. 相似文献
7.
通过流体力学的假设,并结合连续性方程、动量方程、伯努利方程,推导了隧道内风流的动量方程和能量方程.分析了压力计算模式和送排风量的关系,由此建立公路隧道送排式通风的基本理论。 相似文献
8.
Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution). 相似文献
9.
Most ventilation and air conditioning systems are designed without much concern about how settling particles behave in ventilation air flows. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow into an upper zone, where they are evacuated. This is, however, not always true. Previous studies show that high concentrations of settling respirable particles can be found in the breathing zone, and that the exposure rates can be a health hazard to occupants. The emphasis here is on how ventilation systems should be designed to minimize respirable airborne particles in the breathing zone. The supply and exhaust conditions of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation programs of computational fluid dynamics (CFD) type are used. Particle concentrations, thermal conditions and modified ventilation system solutions are reported. 相似文献
10.
A simplified macroscopic method is commonly used for wind-driven ventilation analysis of buildings with small openings. Consequently, it is reasonable to question if and under what conditions will this method provide accurate results in predicting ventilation flow rates in buildings with large openings. We investigate a single-zone cubic building with two equal large openings using a computational fluid dynamics approach. We analyzed the driving forces and the ventilation flow rates due to wind as a function of the geometry, size and relative location of the two openings. The ventilation flow rates are found to be affected by both wind flows around and through the building when the two openings are relatively large. The simplified macroscopic method can provide reasonable engineering accuracy (i.e., less than 10% error) when the porosity of the building envelope does not exceed a critical value. This critical value is not a constant; instead it depends significantly on the degree of alignment between the wind direction and the character of the dominant stream tube associated with the flow through the room. We found that the simplified macroscopic method fails to provide acceptable accuracy when this stream tube is truly dominant and parallel to the wind direction. The effects of wall thickness and aspect ratio of openings are also investigated. 相似文献
11.
Natural ventilation, relying on openings in the façade, is applicable to a limited range of climates, sites and building types. Advanced naturally ventilated buildings, such as those using stacks to encourage buoyancy driven airflow, or hybrid buildings, which integrate both natural and mechanical systems, can extend the range of buildings and climate within which natural ventilation might be used. 相似文献
12.
A study was conducted into the ventilation effectiveness of a ventilation system within a public transport interchange (PTI) in Hong Kong. A computational fluid dynamics (CFD), steady state computational model of the PTI was used to investigate and predict the typical pollutant emission pattern for buses. In Hong Kong, the displacement ventilation (DV) scheme is often employed for the PTI. The numerical simulation investigates the effectiveness of the DV system in removing pollutants from the occupied zone. An alternative model is proposed where the supply is located at the ceiling and the exhausts are located at the lower part of the columns. It was found that both systems could adequately ventilate the PTI; however, the ceiling based air supply system is able to provide improved thermal comfort and indoor air quality (IAQ). 相似文献
13.
In this work, a numerical 3D simulation of a longitudinal ventilation system (LVS) is developed to analyze the fire behaviour inside a road tunnel. The numerical modelling reproduces the Memorial Tunnel, a two-lane, 853 m long road tunnel, used for experimental purposes. On this tunnel, 98 full-scale fire ventilation tests with different ventilation systems were conducted, constituting the first significant experimental approach to analyze fire incidents inside road tunnels. A total number of 24 reversible jet fans were installed in groups of three, nearly equally spaced over the length of the tunnel, and cantilevered from the ceiling of the tunnel. The validation of a numerical model is developed in the present paper. For that purpose, the behaviour of the smoke generated during a fire incident inside a road tunnel is predicted and compared with previous experimental data collected in the Memorial Tunnel Project. The smoke evolution and the performance of the LVS is simulated with a commercial code, FLUENT, which allows 3D unsteady simulations of the Navier–Stokes equations for multispecies mixtures of gases. A sufficient mesh density was introduced for the spatial discretization in order to obtain accurate results in a reasonable CPU time. Hence, typical ratios between total number of cells and the overall tunnel length were employed in the modelling. As a result, good agreement was achieved in all the tested cases, defining an accurate methodology to predict the performance of a LVS in case of fire inside a tunnel. 相似文献
14.
Accurate prediction of ventilation flow is of primary importance for designing a healthy, comfortable, and energy‐efficient indoor environment. Since the 1970s, the use of computational fluid dynamics (CFD) has increased tremendously, and nowadays, it is one of the primary methods to assess ventilation flow in buildings. The most commonly used numerical approach consists of solving the steady Reynolds‐averaged Navier–Stokes (RANS) equations with a turbulence model to provide closure. This article presents a detailed validation study of steady RANS for isothermal forced mixing ventilation of a cubical enclosure driven by a transitional wall jet. The validation is performed using particle image velocimetry (PIV) measurements for slot Reynolds numbers of 1000 and 2500. Results obtained with the renormalization group (RNG) k‐ε model, a low‐Reynolds k‐ε model, the shear stress transport (SST) k‐ω model, and a Reynolds stress model (RSM) are compared with detailed experimental data. In general, the RNG k‐ε model shows the weakest performance, whereas the low‐Re k‐ε model shows the best agreement with the measurements. In addition, the influence of the turbulence model on the predicted air exchange efficiency in the cubical enclosure is analyzed, indicating differences up to 44% for this particular case. 相似文献
15.
The production of dust when driving mining roadways can affect workers health. In addition, there is a decrease in productivity since Mine Safety regulations establish a reduction in the working time depending on the quartz content and dust concentration in the atmosphere.One of the gate roadways of the longwall named E4-S, belonging to the underground coal mine Carbonar SA located in Northern Spain, is being driven by an AM50 roadheader machine. The mined coal has a high coal dust content.This paper presents a study of dust behaviour in two auxiliary ventilation systems by Computational Fluid Dynamics (CFD) models, taking into account the influence of time. The accuracy of these CFD models was assessed by airflow velocity and respirable dust concentration measurements taken in six points of six roadway cross-sections of the mentioned operating coal mine.It is concluded that these models predicted the airflow and dust behaviour at the working face, where the dust source is located, and in different roadways cross-sections behind the working face.As a result, CFD models allow optimization of the auxiliary ventilation system used, avoiding the important deficiencies when it is calculated by conventional methods. 相似文献
16.
Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. 相似文献
17.
结合贵昆铁路六沾复线三联隧道两座大直径深孔通风竖井在软岩地质采用冲击钻孔、钢管护壁等施工过程,从通风竖井的设置、施工方案选择、施工重难点及解决措施等方面对竖井施工进行了总结,从而为类似工程施工提供指导。 相似文献
18.
The presence, flow, and distribution of particle in heating, ventilation, and air-conditioning (HVAC) ducts influence the quality of air in buildings and hence the health of building occupants. To shed a better light on the flow of particles in HVAC ducts this a paper has considered the effects of drag, lift force, gravity, Brownian diffusion, and turbulent diffusion on the dimensionless deposition velocity of particles in smooth vertical ventilation ducts using fully developed and developing velocity profiles. Based on the Reynolds stress transport model (RSM) at two different air velocities, 3.0 m/s and 7.0 m/s, the aforementioned effects were predicted using Reynolds-averaged Navier–Stokes (RANS)–Lagrangian simulation on square shaped ducts under vertical flows. 相似文献
19.
This study explores architectural design by examining air, fluid mechanics, and the natural ventilation of buildings. In this context, this research introduces a new way of dealing with the process of architectural synthesis. The proposed way can be used either to create new architectural projects or to rethink existing ones. This study is supported by previous investigation into the natural ventilation of buildings via computational and laboratory simulation (Stavridou, 2011; Stavridou and Prinos, 2013). The investigation into the natural ventilation of buildings provides information and data that affect architectural design through various parameters. The parameters of architectural synthesis that are influenced and discussed in this paper are the following: (i) inspiration and analogical transfer, (ii) initial conception of the main idea using computational fluid dynamics (digital design), (iii) development of the main idea through an investigatory process toward building form optimization, and (iv) form configuration, shape investigation, and other morphogenetic prospects. This study illustrates the effect of natural ventilation research on architectural design and thus produces a new approach to the architectural design process. This approach leads to an innovative kind of architecture called “breathing architecture.” 相似文献
20.
Emergency ventilation plays an important role in protecting occupants when a hazardous contaminant is released indoors. A number of studies have been conducted to better understand how to protect indoor occupants with effective ventilation strategies. However, little attention has been paid to the impact of the non-uniform and time-dependent distribution of occupants during evacuation. A new concept, Efficiency Factor of Contaminant Source (EFCS), has recently been proposed to evaluate the performance of emergency ventilation by comprehensively considering the spatial and temporal distributions of both the contaminant and occupants. This paper aims to: (1) propose and demonstrate a procedure for determining an optimal ventilation strategy by using EFCS; (2) examine the effects of source locations, ventilation modes, and evacuation modes on the performance of emergency ventilation. One hundred cases with ten ventilation modes, two evacuation modes, and five source locations were investigated numerically. The results show that the EFCS concept can provide a reasonable way to evaluate the performance of emergency ventilation. The threats of different source locations may vary over a large range, and certain measures should be taken to monitor and prevent the releases at high threat locations. A system equipped with multiple ventilation modes is necessary since no universal ventilation mode can successfully mitigate all hazardous situations. The effects of an evacuation mode may be more significant than that of a ventilation mode under certain situations. 相似文献
|