首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine is an essential neurotransmitter and its detection is important for bioanalytical chemistry. Two very different DNA aptamers have been reported for dopamine, one derived from an RNA aptamer (named Apt1) and other obtained via direct aptamer selection (named Apt2). In this study, we used four homogeneous binding assays to compare these two DNA dopamine aptamers. Thiazole orange (TO) fluorescence assay indicated that the Apt2 specifically bound with dopamine with a Kd of 2.37 μM, which was consistent with that from the isothermal titration calorimetry (ITC) assay. However, Apt1 had much less TO fluorescence change and also no signal from ITC. By labeling the two ends of the two aptamers by a fluorophore and a quencher, the aptamer beacons showed binding of dopamine only for Apt2. Finally, the label-free AuNP-based colorimetric assay showed no difference between these two aptamer sequences, and even non-binding random DNA showed the same response, indicating that AuNPs were not a good probe for detecting dopamine. According to the data, Apt1 does not appear to be able to bind dopamine specifically, while Apt2 showed specific binding and could be used for developing related biosensors.  相似文献   

2.
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.  相似文献   

3.
In analogy to human prions, a domain of the translation-termination protein in Saccharomyces cerevisiae, Sup35, can switch its conformation from a soluble functional state, [psi-], to a conformation, [PSI+], that facilitates aggregation and impairs its native function. Overexpression of the molecular chaperone Hsp104 abolishes the [PSI+] phenotype and restores the normal function of Sup35. We have recently shown that Hsp104 interacts preferably with low oligomeric species of a Sup35 derived peptide, Sup35[5-26]; however, due to possible exchange between different oligomeric states, it was not possible to obtain information on the distribution and stability of the oligomeric state. We show here, that low-molecular-weight oligomers (Sup35[5-26])n (n approximately = 4-6) are indeed important for the fibril formation and disassembly process. We find that Hsp104 is able to disaggregate Sup35[5-26] fibrils by substraction of hexameric to decameric Sup35[5-26] oligomers. This disaggregation effect does not require assistance from other chaperones and is independent of ATP at high Hsp104 concentrations. Furthermore, we demonstrate that critical oligomers have a preference for alpha-helical conformations. The conformational reorganization into beta-sheet structures seems to occur only upon incorporation of these oligomers into fibrillar structures. The results are demonstrated by using an equilibrium dialysis experiment that employed different molecular-weight cut-off membranes. A combination of thioflavin-T (ThT) fluorescence and UV measurements allowed the quantification of fibril formation and the amount of peptide diffusing out of the dialysis bag. CD and NMR spectroscopy data were combined to obtain structural information.  相似文献   

4.
Cooperative binding pervades Nature. This review discusses the use of isothermal titration calorimetry (ITC) in the identification and characterisation of cooperativity in biological interactions. ITC has broad scope in the analysis of cooperativity as it determines binding stiochiometries, affinities and thermodynamic parameters, including enthalpy and entropy in a single experiment. Examples from the literature are used to demonstrate the applicability of ITC in the characterisation of cooperative systems.  相似文献   

5.
Isothermal titration microcalorimetry (ITC) is mostly used to investigate the thermodynamics of “specific” host-guest interactions in biology as well as in supramolecular chemistry. The aim of this review is to demonstrate that ITC can also provide useful information about non-specific interactions, like electrostatic or hydrophobic interactions. More attention will be given in the use of ITC to investigate polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as well as protein-lipid interactions. We will emphasize that in most cases these “non specific” interactions, as their definition will indicate, are favoured or even driven by an increase in the entropy of the system. The origin of this entropy increase will be discussed for some particular systems. We will also show that in many cases entropy-enthalpy compensation phenomena occur.  相似文献   

6.
Regulating a system in equilibrium transiently to out-of-equilibrium by using certain stimuli is the strategy used by natural biomolecules to function. Herein, we showed that the interaction of synthetic RNA aptamers, having a G-quadruplex core structure, with their corresponding ligands could be regulated from their equilibrium state to non-equilibrium state in a reversible manner using simple chemical stimuli (Ag+ and cysteine). The approach would be useful for designing aptamer regulators that work in a dynamic nucleic acid network, where a strict control on aptamer-ligand interaction is needed. In addition, to the best of our knowledge, this is the first report which shows that RNA G-quadruplexes can be disrupted by the addition of silver ions. This would be useful not only in designing RNA-based sensors or regulators but would also be useful for understanding the role of metal ions in RNA folding and catalysis.  相似文献   

7.
8.
9.
Screening for small peptidic affinity tags for the detection of ubiquitin and ubiquitinated proteins yielded the dodecapeptide amide DPDELRFNAIAL-NH(2) as a specific ubiquitin-interacting ligand. A peptide collection--based on crystal structures with ubiquitin-interacting proteins--was designed and confirmed by sequence comparison of ubiquitin-interacting motifs. Four independent physical detection methods demonstrated that the peptide binds to monomeric ubiquitin with an affinity of about 10 muM and with fast on and off rates. Fluorescence correlation spectroscopy with fluorescent peptides showed specific interaction with ubiquitin. Reflectometric interference spectroscopy with surface-immobilized peptides and isothermal calorimetry measurements confirmed the specific binding of ubiquitin and fast rate constants. (1)H,(15)N heteronuclear NMR localised the interaction site across the beta sheet of ubiquitin. The peptide aligns well with the ubiquitin-interacting motif and represents a lead structure for the rational design of high-affinity tags for targeting ubiquitinated protein in vitro and in vivo.  相似文献   

10.
A ligand‐binding study is presented focusing on thermodynamics of fragment expansion. The binding of four compounds with increasing molecular weight to protein kinase A (PKA) was analyzed. The ligands display affinities between low‐micromolar to nanomolar potency despite their low molecular weight. Binding free energies were measured by isothermal titration calorimetry, revealing a trend toward more entropic and less enthalpic binding with increase in molecular weight. All protein–ligand complexes were analyzed by crystallography and solution NMR spectroscopy. Crystal structures and solution NMR data are highly consistent, and no major differences in complex dynamics across the series are observed that would explain the differences in the thermodynamic profiles. Instead, the thermodynamic trends result either from differences in the solvation patterns of the conformationally more flexible ligand in aqueous solution prior to protein binding as molecular dynamics simulations suggest, or from local shifts of the water structure in the ligand‐bound state. Our data thus provide evidence that changes in the solvation pattern constitute an important parameter for the understanding of thermodynamic data in protein–ligand complex formation.  相似文献   

11.
Solution‐phase self‐association characteristics and DNA molecular‐recognition properties are reported for three close analogues of minor‐groove‐binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPyiPrThDp) shows similar self‐assembly characteristics to thiazotropsin A (FoPyPyiPrThDp), although it is engineered, by incorporation of imidazole in place of N‐methyl pyrrole, to swap its DNA recognition target from 5′‐ACTA GT‐3′ to 5′‐ACGC GT‐3′. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK‐18/51 results in a measureable difference in solution‐phase self‐assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self‐assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor‐groove complexes.  相似文献   

12.
G-quadruplexes are higher-order nucleic acids structures formed by G-rich sequences that are stabilized by tetrads of hydrogen-bonded guanine bases. Recently, there has been growing interest in the study of G-quadruplexes because of their possible involvement in many biological processes. Isothermal titration calorimetry (ITC) has been proven to be a useful tool to study the energetic aspects of G-quadruplex interactions. Particularly, ITC has been applied many times to determine the thermodynamic properties of drug-quadruplex interactions to screening among various drugs and to address drug design. In the present review, we will focus on the ITC studies of G-quadruplex structures and their interaction with proteins and drugs and the most significant results will be discussed.  相似文献   

13.
Uric acid is the end-product of purine metabolism in humans and an important biomarker for many diseases. To achieve the detection of uric acid without using enzymes, we previously selected a DNA aptamer for uric acid with a Kd of 1 μM but the aptamer required multiple Na+ ions for binding. Saturated binding was achieved with around 700 mM Na+ and the binding at the physiological condition was much weaker. In this work, a new selection was performed by alternating Mg2+-containing buffers with Na+ and Li+. After 13 rounds of selection, a new aptamer sequence named UA-Mg-1 was obtained. Isothermal titration calorimetry confirmed aptamer binding in both selection buffers, and the Kd was around 8 μM. The binding of UA-Mg-1 to UA required only Mg2+. This is an indicator of successful switching of metal dependency via the salt-toggled selection method. The UA-Mg-1 aptamer was engineered into a fluorescent biosensor based on the strand-displacement assay with a limit of detection of 0.5 μM uric acid in the selection buffer. Finally, comparison with the previously reported Na+-dependent aptamer and a xanthine/uric acid riboswitch was also made.  相似文献   

14.
A modified DNA aptamer that binds BACE1, a therapeutic target involved in Alzheimer's disease has been developed. This ssXNA not only tightly binds to BACE1 but also inhibits its protease activity in vitro in the same range as a previously described unmodified aptamer. We report the in vitro selection of functional oligonucleotides incorporating two nucleobase modifications: 5‐chlorouracil and 7‐deazaadenine. The nucleoside analogue 5‐chloro‐2′‐deoxyuridine has already been explored as a replacement for thymidine in a chemically modified genome of a bacterium. Thus, 5‐chlorouracil modification is a good candidate to support genetic transfer in vivo as well as functional activity.  相似文献   

15.
In this article we investigate the effect of multivalency in chiral recognition. To this end, we measured the host-guest interaction of a β-cyclodextrin dimer with divalent chiral guests. We report the synthesis of carbohydrate-based water soluble chiral guests functionalized with two borneol, menthol, or isopinocampheol units in either (+) or (-) configuration. We determined the interaction of these divalent guests with a β-cyclodextrin dimer using isothermal titration calorimetry. It was found that-in spite of a highly unfavorable conformation-the cyclodextrin dimer binds to guest dimers with an increased enantioselectivity, which clearly reflects the effect of multivalency.  相似文献   

16.
The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide‐based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase‐type plasminogen activator (uPA), based on the established monocyclic peptide, upain‐2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across‐the‐ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain‐2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain‐2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X‐ray structure of the bicyclic‐peptide–uPA complex confirmed an interaction similar to that for the previous upain‐1/upain‐2–uPA complexes. These physical studies of the peptide–protease interactions will aid future designs of bicyclic peptide protease inhibitors.  相似文献   

17.
18.
19.
以玻片为载体,采用共价偶联法对适配体进行了固定,考察了硅烷化试剂浓度、硅烷化反应温度和时间、适配体与玻片反应时间和温度、适配体浓度和长度对适配体固定率的影响,确定了适配体固定于玻片的最佳条件为:将浓度为1.59×10-5 mol·L-1的16个碱基的适配体涂抹在经4×10-3 mol·L-1硅烷化试剂45℃下处理30min的玻片表面上,在45℃下固定化反应120min,适配体固定率达62.05%。在此基础上初步探讨了固定有特异性适配体的玻片对水溶液中Hg2+的吸附,吸附汞的效率达49.84%。此方法操作简便、成本低廉,且能有效固定未经修饰的适配体,为利用适配体对水中重金属进行富集和去除的研究提供了参考。  相似文献   

20.
张龙  胡新根  方国勇 《广东化工》2011,(8):23-24,22
以N,乙酰-L-半胱氨酸为修饰剂,制备了水溶性的CdTe量子点(NAc—CdTeQDs)。利用荧光光谱法和等温滴定量热法(11℃)研究了NAC-CdTeQDs与人血清白蛋白(HsA)的相互作用。结果表明,NAC—CdTeQDs对HSA内源荧光具有较强的动态猝灭作用,且猝灭作用是扩散控制的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号