首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting the cutter consumption and the exact time to replace the worn-out cutters in tunneling projects constructed with tunnel boring machine (TBM) is always a challenging issue. In this paper, we focus on the analyses of cutter motion in the rock breaking process and trajectory of rock breaking point on the cutter edge in rocks. The analytical expressions of the length of face along which the breaking point moves and the length of spiral trajectory of the maximum penetration point are derived. Through observation of rock breaking process of disc cutters as well as analysis of disc rock interaction, the following concepts are proposed: the arc length theory of predicting wear extent of inner and center cutters, and the spiral theory of predicting wear extent of gage and transition cutters. Data obtained from 5621 m-long Qinling tunnel reveal that among 39 disc cutters, the relative errors between cumulatively predicted and measured wear values for nine cutters are larger than 20%, while approximately 76.9% of total cutters have the relative errors less than 20%. The proposed method could offer a new attempt to predict the disc cutter's wear extent and changing time.  相似文献   

2.
The performance of tunnel boring machines (TBM) highly depends on the fragmentation efficiency of the cutters. Many geological factors can influence the rock fragmentation process. In this study, a series of two dimension numerical modeling were performed using the discrete element method (DEM) to explore the effect of joint orientation on rock fragmentation by a TBM cutter. Results show that the joint orientation can significantly influence the crack initiation and propagation as well as the fragmentation pattern, and hence affect the penetration rate of the TBM. Such observations are also noted by laboratory and site studies. It also indicates that discontinuum-based DEM has the potential in simulating rock indentation and fragmentation by TBM cutters when rock joints are taken into consideration.  相似文献   

3.
刀具磨损是影响TBM掘进效率的重要因素,该文以北疆供水二期工程XEVIII标段隧洞为依托,开展高强度围岩条件下刀具磨损规律研究.该标段已掘进段围岩强度最大为160MPa,平均为120MPa.根据掘进过程中的刀具磨损统计资料,分析不同刀位的刀具磨损值、围岩强度和掘进参数对刀具磨损的影响以及不同掘进参数对刀具磨损的敏感度,...  相似文献   

4.
The influence of joint spacing on tunnel boring machine (TBM) penetration performance has been extensively observed at TBM site. However, the mechanism of rock mass fragmentation as function of the joint spacing has been scarcely studied. In this study, the rock indentation by a single TBM cutter is simulated by using the discrete element method (DEM), and the rock fragmentation process is highlighted. A series of two-dimensional numerical modelling with different joint spacing in a rock mass have been performed to explore the effect of joint spacing on rock fragmentation by a TBM cutter. Results show that the joint spacing can significantly influence the crack initiation and propagation, as well as the fragmentation pattern, and can hence affect the penetration rate of the TBM. Two crack initiation and propagation modes are found to fragment the rock mass due to the variation of joint spacing. The simulation results are analyzed and compared with in situ measurements.  相似文献   

5.
采用引入考虑胶结尺寸的微观接触模型的PFC2D离散元软件,对全断面岩石掘进机(TBM)盘形滚刀作用下简单形式的复合岩体破岩机理进行数值模拟研究。进行了单滚刀、双滚刀和三滚刀作用下的复合岩体破碎过程的模拟。模拟结果表明:滚刀破岩过程可以分为三个阶段:加载阶段、卸载阶段和残余跃进阶段。通过双滚刀和三滚刀侵入复合岩体的推力-侵深曲线分析,软岩上的滚刀比硬岩上的滚刀进入各阶段稍慢,略有滞后;不同滚刀间的峰值法向推力相差较大,易造成滚刀磨损。对于花岗岩-绿片岩复合岩体,破岩时接触力链被岩体分界面分割,硬岩区胶结破坏数目较多,双滚刀、三滚刀侵入时易形成贯通裂缝;破岩效率由大到小为双滚刀效率、三滚刀效率、单滚刀效率,而且双滚刀能够将效率提高一倍左右。  相似文献   

6.
Accurate prediction of rock cutting forces of disc cutters is especially significant for the design and construction of tunnel boring machine (TBM). Through the analysis of motion trajectory of TBM disc cutters, a three-dimensional model of rock breaking process of disc cutters is established. In terms of the rock strain which is resulted from the interaction between disc cutters and rock during the process of rock breaking, a three-dimensional cutting forces model is proposed with disc cutters set at certain parameters and in certain sizes. Subsequently, the equation of contacting forces between rock and disc cutter is derived. Moreover, a new method has been presented for the study of the rock breaking theory of the disc cutter and it also provides guidance for the design and application of TBM in tunnel excavation. The three-dimensional model for the rock breaking mechanism is used for predicting the cutting force for the situation of mixed ground.The damage field and the rock failure zone induced by disc cutter for mixed ground are also discussed in this study. In detail, the rock damage zones are divided into two parts, one is the left damage field which located in the outside of disc cutter. The other is the right damage field which located in the outside of disc cutter. The influence of the rock ground dip on the rock failure zone was also studied by parameter analysis.  相似文献   

7.
In this paper, a novel meshfree numerical method known as General Particle Dynamics (GPD) is proposed to reveal the mechanism of the rock fragmentation by TBM cutters. Rock fragmentation by two cutters in consecutive joints rock is investigated using GPD. The numerical results obtained from GPD are in good agreement with the field observed results. Moreover, the effects of the length of intermittent joints on rock fragmentation by two cutters are investigated using GPD. It is found from the numerical results that the length of intermittent joints can significantly influence the crack initiation and propagation and coalescence as well as the fragmentation pattern, and hence affect the penetration rate of the TBM. It indicates that GPD has the potential in simulating rock indentation and fragmentation by TBM cutters.  相似文献   

8.
特长隧道TBM掘进施工技术研究   总被引:2,自引:0,他引:2  
针对秦岭隧道复杂地质情况 ,采用TBM施工方法 ,对秦岭Ⅰ线隧道出口段的TBM掘进速度与地质、设备维护及管理的关系进行了分析 ,并提出提高工时利用率的方法 ,为敞开式TBM在我国隧道工程施工中的应用积累了经验。  相似文献   

9.
全断面隧道掘进机是集掘进、排渣装运、衬砌施作等工序于一体的大型隧道施工装备,掘进时依靠刀盘旋转切削岩石与土体,并靠千斤顶向前推进。掘进机切削机构的主要工作参数有刀盘转矩、转速及推力,其中刀盘转速是掘进机设计的重要参数,本文从刀盘破岩、排渣及机械设计等方面对其进行讨论。  相似文献   

10.
A summary of a research program covering a period of two years on the performance of a TBM in a very complex and difficult geology is presented in this study. The formations in the study area varied from alluvium, sludge, mudstone, shale and limestone to quartzite with strengths from soft to very hard. The dykes frequently intruded the sedimentary rocks resulting in different degrees of weathering and fracturing in the country rock causing tremendous delays in progress rate of the TBM. The disc cutters started cutting inefficiently in clayey medium strength ground with extreme water income, at where also excessive disc consumptions started due to insufficient friction between the disc cutters and very soft (sludgy) formation, and it was decided to replace all disc cutters with chisel tools (ripper, scraper). Before making this important decision that could affect totally the excavation efficiency and production rate, some theoretical estimations were performed using the Evans’ cutting theory after some modifications based on the previous experimental studies for relieved cutting mode and wear flat, front ridge and vee-bottom angles found in complex shapes of chisel tools to estimate deterministically the torque and thrust requirements of the TBM.Field measurements of the torque and thrust requirements of the TBM equipped with the chisel tools validated the theoretical considerations and the deterministic model used for predicting the performance. Statistical analysis indicated that the model could be used reliably for performance prediction. This study also gave a unique opportunity to compare the performance of disc cutters and chisel tools used on the same TBM at variety of grounds and to analyze the effect of replacing disc cutters with chisel tools on the performance of the TBM. The field measurements indicated that the chisel tools were superior to the disc cutters in especially soft to medium strength rocks.  相似文献   

11.
Field penetration index (FPI) is one of the representative key parameters to examine the tunnel boring machine (TBM) performance. Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering. This study aims to predict TBM performance (i.e. FPI) by an efficient and improved adaptive neuro-fuzzy inference system (ANFIS) model. This was done using an evolutionary algorithm, i.e. artificial bee colony (ABC) algorithm mixed with the ANFIS model. The role of ABC algorithm in this system is to find the optimum membership functions (MFs) of ANFIS model to achieve a higher degree of accuracy. The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index (BI), fracture spacing, α angle between the plane of weakness and the TBM driven direction, and field single cutter load were assigned as model inputs to approximate FPI values. According to the results obtained by performance indices, the proposed ANFIS_ABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model. In terms of coefficient of determination (R2), the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFIS_ABC model, respectively, which confirm its power and capability in solving TBM performance problem. The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions.  相似文献   

12.
This paper is to investigate the mechanical responses and failure characteristics of soft rock in multi-indentation tests by a single TBM constant cross section (CCS) disc cutter. Different pre-set penetration depths and totally three cycles of indentation processes were employed in the repeated indentation tests conducted on the cubic cement mortar specimens. The load-penetration depth curve, penetration load, peak-load penetration depth, rock breakage work and compacted zone depth for the three indentation processes were analyzed. The strength and deformation properties and failure behavior of soft rock under different indentation conditions were revealed. The rock breakage behavior after several indentation processes still presents brittle failure characteristic with small pre-set penetration depths, but the specimens with large pre-set penetration depths appear obvious plastic failure mode. Approximately equal leap loads are obtained from both the intact specimen in direct indentation failure test and the weakened specimens after several indentation processes with different pre-set penetration depths, but the peak-load penetration depths for specimens with different pre-set penetration depths are varying. Curves of the cumulative penetration depth and cumulative rock breakage work both reach the corresponding peak values for one certain pre-set penetration depth. Along with this most unfavourable pre-set penetration depth, rock breakage efficiency is the lowest and energy consumption is the highest.  相似文献   

13.
Underground research laboratory (URL) plays an important role in safe disposal of high-level radioactive waste (HLW). At present, the Xinchang site, located in Gansu Province of China, has been selected as the final site for China’s first URL, named Beishan URL. For this, a preliminary design of the Beishan URL has been proposed, including one spiral ramp, three shafts and two experimental levels. With advantages of fast advancing and limited disturbance to surrounding rock mass, the tunnel boring machine (TBM) method could be one of the excavation methods considered for the URL ramp. This paper introduces the feasibility study on using TBM to excavation of the Beishan URL ramp. The technical challenges for using TBM in Beishan URL are identified on the base of geological condition and specific layout of the spiral ramp. Then, the technical feasibility study on the specific issues, i.e. extremely hard rock mass, high abrasiveness, TBM operation, muck transportation, water drainage and material transportation, is investigated. This study demonstrates that TBM technology is a feasible method for the Beishan URL excavation. The results can also provide a reference for the design and construction of HLW disposal engineering in similar geological conditions. © 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  相似文献   

14.
不同围压及切削顺序对TBM刀具破岩机理的影响   总被引:3,自引:0,他引:3  
在综合考虑围压及刀具切削顺序的前提下,利用二维离散单元法建立双把TBM刀具切削节理不发育岩石的仿真模型,模拟出岩石裂纹的生产与扩展全过程。根据获得的裂纹扩展形态以及破碎块形成规则,总结归纳出四种典型破碎模式,并从刀具破岩效率、岩石裂纹扩展能力以及岩石破碎块度三个方面对刀具破岩机理进行进一步研究。仿真结果表明:随着围压的增加,刀具的破岩效率与裂纹扩展能力降低;同时加载方式下破岩效率比先后加载方式要大,而裂纹扩展能力则刚好相反;岩石破碎块度与破碎模式有关。  相似文献   

15.
This study implements a hybrid ensemble machine learning method for forecasting the rate of penetration (ROP) of tunnel boring machine (TBM), which is becoming a prerequisite for reliable cost assessment and project scheduling in tunnelling and underground projects in a rock environment. For this purpose, a sum of 185 datasets was collected from the literature and used to predict the ROP of TBM. Initially, the main dataset was utilised to construct and validate four conventional soft computing (CSC) models, i.e. minimax probability machine regression, relevance vector machine, extreme learning machine, and functional network. Consequently, the estimated outputs of CSC models were united and trained using an artificial neural network (ANN) to construct a hybrid ensemble model (HENSM). The outcomes of the proposed HENSM are superior to other CSC models employed in this study. Based on the experimental results (training RMSE = 0.0283 and testing RMSE = 0.0418), the newly proposed HENSM is potential to assist engineers in predicting ROP of TBM in the design phase of tunnelling and underground projects.  相似文献   

16.
莫振泽 《土工基础》2013,(6):102-104
为了研究自由面对滚刀破岩机理的影响,运用UDEC方法建立了滚刀贯切岩石的二维数值系列模型,对TBM滚刀破岩过程进行了仿真。分析表明:在合理的刀间距和贯人度情况下,破碎坑自由面的存在使裂纹扩展能耗降低,裂纹密度增大,起裂方式增多,容易实现体积破碎,提高滚刀破岩效率。  相似文献   

17.
Rock stress problems induced by overburden or anisotropic stresses are significant to the TBM tunneling. In this paper, the effect of different confining stressed conditions on TBM performance are investigated by using full-scale cutting tests with large intact granite specimens (1000 mm × 1000 mm × 600 mm). In these tests, the effects of confining stresses on the normal force, rolling force, the cutting coefficient and specific energy are analyzed. It is found that the confining stress has significant impact on the normal force and rolling force. Specifically, for the same cutting spacing and penetration depth, the normal force increases with increasing confining stress due to enhancement of the rock resistance strength; meanwhile the rolling force decreases gradually with increasing confining stress. The stress deviation between two confining directions affects the optimum penetration that corresponds to small specific energy. The results provide better understanding of the effect of confining stress on the TBM performance and also recommend some guidelines for TBM tunneling under stressed geological condition.  相似文献   

18.
Joint spacing is one of the most important geological factors influencing rock fragmentation by TBM cutters and TBM performance. In order to study the influence of joint spacing, full-scale linear cutting tests have been conducted for the Beishan granite samples with different joint spacing (i.e. one intact sample, two jointed samples with joint spacing of 100 mm and 400 mm). For different joint spacing, the influence of penetration depth on rock fragmentation was also explored by varying the penetration depth with an interval of 0.5 mm. During the test process, the three directional forces acting on the TBM cutter were recorded, and the rock chips formed by each cutting pass were weighed, respectively. By analysing the cutting force, crack initiation/propagation and rock chips, the influences of joint spacing on rock fragmentation process by TBM cutter were investigated. The test results showed that the increase of penetration depth cannot improve the TBM breakage efficiency after reaching a certain value for the intact rock sample, and the normal force for intruding the intact rock is larger than that for intruding the rock jointed samples. It is also found that the sample part below the joint plane is intact, thus joint can restrain the crack propagating cross the joint plane and facilitates the chips formation on the cutting surface. For the rock sample with joint spacing of 100 mm, two rock fragmentation modes were found during the cutting process. One mode is that the cracks initiate from the crushed zone under TBM cutter, and the cracks propagate to the joint plane, consequently form large rock chips. The other one is that the cracks initiate from the joint plane and then propagate to the rock cutting surface, and the cracks initiate before the formation of the crushed zone under the cutter. For the rock sample with joint spacing of 400 mm, there are two rock fragmentation stages, i.e., the normal rock fragmentation stage and the joint-controlled rock fragmentation stage. There is a transitional process between these two stages, and also the median crack can be promoted to propagate vertically to joint plane due to the joint existence. This study can provide useful guidance for operation optimization and performance prediction for TBM operating in jointed rock masses.  相似文献   

19.
20.
Zagros water conveyance tunnel (ZWCT) is a 49 km tunnel designed for conveying 70 m3/s water from Sirvan River southward to Dashte Zahab plain in western Iran. This long tunnel has been divided in 3 Lots namely 1A, 1B, 2. By November 2014, about 22 km of the Lot 2 (with a total length of 26 km) has been excavated by two double shield TBMs from two southern and northern portals. The bored section of tunnel passed through different geological units of 3 main formations of Zagros mountain ranges which mainly consist of weak to moderately strong argillaceous-carbonate sedimentary rocks. In this paper, the operating and as-built geological data collected during construction phase of the Lot 2 of ZWCT project was used to compare the calculated machine performance by empirical methods such as the Hassanpour et al. (2011), QTBM, NTNU, Palmstrom, and theoretical model of Colorado School of Mines or CSM. The predicted penetration rates were then compared with the observed field performance of the machine and the variations of predicted rates were examined by statistical analysis. The results showed that the site-specific model, which was based on TBM performance in similar formations can provide estimates closer to actual machine performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号