首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates the leader‐follower consensus problem of a class of non‐strict‐feedback nonlinear multiagent systems with asymmetric time‐varying state constraints (ATVSC) and input saturation, and an adaptive neural control scheme is developed. By introducing the distributed sliding‐mode estimator, each follower can obtain the estimation of leader's trajectory and track it directly. Then, with the help of time‐varying asymmetric barrier Lyapunov function and radial basis function neural networks, the controller is designed based on backstepping technique. Furthermore, the mean‐value theorem and Nussbaum function are utilized to address the problems of input saturation and unknown control direction. Moreover, the number of adaptive laws is equal to that of the followers, which reduces the computational complexity. It is proved that the leader‐follower consensus tracking control is achieved without violating the ATVSC, and all closed‐loop signals are semiglobally uniformly ultimately bounded. Finally, the simulation results are provided to verify the effectiveness of the control scheme.  相似文献   

2.
This paper investigates the distributed adaptive event-triggered consensus control for a class of nonlinear agents. Each agent is subject to input saturation. Two kinds of distributed event-triggered control scheme are introduced, one is continuous-time-based event-triggered scheme and the other is sampled-data-based event-triggered scheme. Compared with the traditional event-triggered schemes in the existing literatures, the parameters of the event-triggered schemes in this paper are adaptively adjusted by using some event-error-dependent adaptive laws. The problem of simultaneously deriving the controller gain matrix and the event-triggering parameter matrix, and tackling the saturation nonlinearity is cast into standard linear matrix inequalities problem. A convincing simulation example is given to demonstrate the theoretical results.  相似文献   

3.
This article is concerned with event-triggered adaptive tracking control design of strict-feedback nonlinear systems, which are subject to input saturation and unknown control directions. In the design procedure, a smooth nonlinear function is employed to approximate the saturation function so that the controller can be designed under the framework of backstepping. The Nussbaum gain technique is employed to address the issue of the unknown control directions. A predetermined time convergent performance function and a nonlinear mapping technique are introduced to guarantee that the tracking error can converge in the predetermined time with a fast convergence rate and a high accuracy. Then the event-triggered adaptive prescribed performance tracking control strategy is proposed, which not only ensures the boundedness of all the closed-loop signals and the convergence of tracking error but also reduces the communication burden from the controller to the actuator. At last, the simulation study further tests the availability of the proposed control strategy.  相似文献   

4.
This paper investigates the output containment tracking problem of nonlinear multiagent systems with mismatched uncertain dynamics and input saturations. A neural network–based distributed adaptive command filtered backstepping (CFB) scheme is given, which can guarantee that the containment tracking errors reach to the desired neighborhood of origin and all signals in the closed‐loop system are bounded. Note that error compensation system and virtual control laws established in CFB only use local information, so the given scheme is completely distributed. Moreover, the applied sliding mode differentiator (SMD) can make the outputs of SMD fast approximate the virtual signal and its derivative at each step of backstepping, which can further improve the control quality. Finally, a simulation example is given to show the effectiveness of the proposed scheme.  相似文献   

5.
The robust tracking control problem of the leader-follower multiagent systems affected by asymmetric input saturation and external disturbances is addressed in this article, by following three steps. First, an radial basis function neural network (RBFNN) is developed to estimate the external disturbances and supersaturation, where the supersaturation is induced by asymmetric saturation actuator. Second, combining with the developed radial basis function neural network, a reduced-order observer-based static protocol and a reduced-order observer-based adaptive one are designed for leader-follower systems with un-directed communication topology as well as those with directed communication topology, respectively. Third, some mild premises are given to guarantee the semiglobal robust leader-follower consensus for the above mentioned two kinds of multiagent systems. Finally, the theoretical results are verified by several numerical simulations.  相似文献   

6.
This paper is concerned with the problem of adaptive output feedback quantised tracking control for a class of stochastic nonstrict-feedback nonlinear systems with asymmetric input saturation. Especially, both input and output signals are quantised by two sector-bounded quantisers. In order to solve the technical difficulties originating from asymmetric saturation nonlinearities and sector-bounded quantisation errors, some special technique, approximation-based methods and Gaussian error function-based continuous differentiable model are exploited. Meanwhile, an observer including the quantised input and output signals is designed to estimate the states. Then, a novel output feedback adaptive quantised control scheme is proposed to ensure that all signals in the closed-loop system are 4-moment (2-moment) semi-globally uniformly ultimately bounded while the output signal follows a desired reference signal. Finally, the effectiveness and applicability of the design methodology is illustrated with two simulation examples.  相似文献   

7.
This paper studies cluster quasi-consensus problem for a class of unknown nonlinear multiagent systems (MASs) with directed communication topology. First, a distributed continuous neural network (NN)-based adaptive protocol is presented for solving this problem by introducing reference model to each agent. Then, taking limited communication resource and energy consumption into account, a distributed event-triggered cluster quasi-consensus protocol is proposed. Different from the existing results, two event-triggered mechanisms are constructed in the proposed event-triggered protocol to reduce communication load and control update frequency as possible. The sufficient conditions that guarantee cluster quasi-consensus under the both proposed protocols are obtained, respectively. Zeno behavior is proved to be excluded. Finally, simulation results verify the effectiveness of the proposed protocols.  相似文献   

8.
In this paper, an adaptive prescribed performance output-feedback control scheme is proposed for a class of switched nonlinear systems with input saturation. The MT-filters are employed to estimate the unmeasured states and the unknown functions are approximated by the radial basis function neural networks in controller design procedure. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error satisfies the prescribed performance. Finally, simulation results are given to illustrate the effectiveness of the proposed approach.  相似文献   

9.
This article addresses the event-triggered adaptive consensus control of nonlinear multi-agent systems with unknown control direction and actuator saturation. A new robust adaptive control algorithm based on an event-triggered mechanism is designed. The smooth Lipschitz function approximates the saturated nonlinear function, while the Nussbaum function handles unknown control directions and residual terms. The event-triggered mechanism is designed to determine the time of communication, significantly reducing the communication burden. An additional estimator is utilized to deal with unknown parameters involved in neighbor dynamics and prevent information exchange to consistency errors between connected subsystems. The results show that all the signals of the closed-loop system are uniformly bounded, and the consensus tracking error converges to a bounded set. Meanwhile, Zeno's behavior is eliminated. Simulation results confirm the superiority of the proposed method.  相似文献   

10.
In this article, the adaptive tracking control problem is considered for a class of uncertain nonlinear systems with input delay and saturation. To compensate for the effect of the input delay and saturation, a compensation system is designed. Radial basis function neural networks are directly utilized to approximate the unknown nonlinear functions. With the aid of the backstepping method, novel adaptive neural network tracking controllers are developed, which can guarantee all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the system output can track the desired signal with a small tracking error. In the end, a simulation example is given to illustrate the effectiveness of the proposed methods.  相似文献   

11.
利用神经网络和滑模控制,研究带有饱和输入的一类非线性系统。为了便于问题分析,引入饱和约束模型输出与控制输入的差值这个变量,分5种情况讨论,求得神经网络权值的在线调节律,得到保证闭环系统稳定的控制律。利用Lyapunov函数,证明了闭环系统的稳定性;仿真实验说明了算法的有效性。  相似文献   

12.
This paper focuses on switching event-triggered controller design for switched continuous-time systems with actuator saturation. First, we revisit the switching event-triggered sampled-data mechanism (ETSDM) to adapt it to the state feedback control of switched systems with actuator saturation. Then, by thinking of the ETSDM as a switching between periodic sampling and continuous ETSDM, constructing a switching multiple Lyapunov functions to give the analysis and design, and adopting the sector conditions to deal with the saturation, the sufficient conditions and the initial region ensuring the exponential stability of the switched system are proposed. Furthermore, the corresponding solvable conditions for the switching event-triggered controller and the triggering parameter matrices are established. Finally, a circuit example is given to illustrate the validity of the proposed results.  相似文献   

13.
This paper investigates the problem of event‐based synchronization of linear dynamical networks subject to input saturation. The asynchronous neighboring information transmission is triggered by distributed events. The sampled control technique is utilized to exclude both the internal Zeno behavior of each agent and the network Zeno behavior attributed to neighboring agents. Allowing the input saturation to be attained, an event‐based global synchronization algorithm is proposed for multiagent networks with neutrally stable dynamics. For general linear networks, an event‐triggered control protocol is designed using the modified algebraic Riccati equation, with a low‐gain cooperative control law proposed to achieve semiglobal synchronization. A numerical example is presented to illustrate the theoretical results.  相似文献   

14.
本文研究了具有输入饱和的非线性系统事件触发控制策略设计问题.首先,针对输入饱和下非线性系统,建立混杂系统模型.其次,当非线性函数满足Lipschitz条件下,给出闭环混杂系统局部一致渐近稳定性的稳定判据,并设计了事件触发饱和控制器.然后,当非线性函数满足扇区条件时,给出闭环混杂系统框架下满足局部一致渐近稳定性的LMI条件,并设计了事件触发饱和控制器.进一步地,在事件触发饱和控制器作用下,分析了非线性系统的半全局鲁棒镇定性.最后,结合两个仿真实例说明了所提出事件触发控制策略的有效性.  相似文献   

15.
This paper studies the distributed optimization problem of second-order multiagent systems containing external disturbances. To reject the external disturbances and lead agents' states to converge to the optimal consensus point, an adaptive event-triggered controller is proposed based on the internal model principle. With the adaptive mechanism, both the controller and the event-triggering condition do not contain the parameters related to global information, such as the maximum Lipschitz constant and the minimum strongly convex constant of local cost functions, and hence the event-triggered controller is fully distributed. By utilizing the event-triggered scheme, the consumption of communication among neighbors and the computing resources are saved. Furthermore, with the Lyapunov analysis framework, the optimal consensus can be proved to achieve and Zeno behavior is excluded from the event-triggering condition. Finally, the effectiveness of the proposed protocol is verified by numerical simulations.  相似文献   

16.
为解决实际海况下全驱动船舶的动力定位控制任务存在参数不确定、模型结构不确定和通信资源限制等问题,本文提出一种具有事件触发输入的鲁棒自适应动力定位控制算法.该算法采用径向基函数神经网络对系统模型不确定进行逼近,同时针对通信带宽受限问题,设计了一种具有事件触发机制的执行器输入,降低了控制器和执行器之间的信道占用.此外,该算法还解决了状态变量与执行器增益不确定性之间的强耦合问题,并且设计了在线更新的自适应参数去补偿执行器增益不确定,以确保船舶能够稳定执行动力定位任务.利用Lyapunov稳定性理论证明了闭环控制系统中所有误差变量都满足半全局一致最终有界收敛.通过对比仿真实验验证了所提出算法的有效性.  相似文献   

17.
Considering interconnections among subsystems, we propose an adaptive neural tracking control scheme for a class of multiple-input-multiple-output (MIMO) non-affine pure-feedback time-delay nonlinear systems with input saturation. Neural networks (NNs) are employed to approximate unknown functions in the design procedure, and the separation technology is introduced here to tackle the problem induced from unknown time-delay items. The adaptive neural tracking control scheme is constructed by combining Lyapunov–Krasovskii functionals, NNs, the auxiliary system, the implicit function theory and the mean value theorem along with the dynamic surface control technique. Also, it is proven that the strategy guarantees tracking errors converge to a small neighbourhood around the origin by appropriate choice of design parameters and all signals in the closed-loop system uniformly ultimately bounded. Numerical simulation results are presented to demonstrate the effectiveness of the proposed control strategy.  相似文献   

18.
针对一类输入受限的非线性系统,提出了一种自适应模糊backsteppig控制器的设计方法.在控制器的设计过程当中,采用模糊系统对不确定非线性函数在线逼近;利用双曲正切函数和Nussbaum函数对系统输入饱和函数进行处理;将动态面法与backstepping法相结合解决"计算膨胀"的问题.通过Lyapunov理论分析证明了所设计的控制器能够使闭环系统所有信号半全局一致有界(SGUUB).最后应用于高超声速飞行器的攻角跟踪控制中,仿真结果表明该方法的有效性.  相似文献   

19.
本文研究控制输入饱和受限情况下不确定系统的滑模控制问题,其中,被控对象同时存在状态矩阵不确定性和控制增益矩阵不确定性.设计了一种积分型切换面和一个具有特殊结构的滑模控制律,可以在参数不确定和控制受限影响下保证系统状态轨迹有限时间内到达指定的切换面,利用等价控制律方法给出了滑模动态渐近稳定的充分条件.数值仿真例子验证了本文算法的有效性.  相似文献   

20.
In this paper, the problem of output feedback tracking control is investigated for lower‐triangular nonlinear time‐delay systems in the presence of asymmetric input saturation. A novel design program based on a dynamic high gain design approach is proposed to construct an output feedback tracking controller. The innovation here is that the problem of constructing tracking controller can be transformed into the problem of constructing two dynamic equations, with one being utilized to deal with the nonlinear terms and the other one being applied to analyze the influence of asymmetric input saturation. It is proved by an appropriate Lyapunov‐Krasovskii functional that the proposed tracking controller subject to saturation can ensure that all the signals of the closed‐loop system are globally bounded and the tracking error is prescribed sufficiently small when time is long enough. A practical example is given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号