首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled shear-flow tests were conducted on two artificial rock fractures with natural rock fracture characteristics under constant normal loading boundary conditions. Numerical simulations using the 3-D Navier–Stokes equations taking account of the inertial effects of fluid were conducted using the void space geometry models obtained from the coupled shear-flow tests. The test and numerical simulation results show that the evolutions of geometrical and hydraulic characteristics of rock fracture exhibit a three-stage behavior. Transmissivity of a certain void space geometry within a fracture is related to the Reynolds number of fluid flow due to the inertial effects of fluid, which can be represented by the Navier–Stokes equations, but cannot be represented by some simplified equations, such as the cubic law, the Reynolds equation or the Stokes equations. The mechanical aperture is usually larger than the hydraulic aperture back-calculated from measured flow rate, and the difference between them is found strongly related to the geometrical characteristics of the fractures. A mathematical equation is proposed to describe the relation between hydraulic aperture and mechanical aperture by means of the ratio of the standard deviation of local mechanical aperture to its mean value, the standard deviation of local slope of fracture surface and Reynolds number.  相似文献   

2.
Synthetic fractures of from 0.2 to 12.8 m in size were created on a computer by a new spectral method to reproduce the ratio of the power spectral density of the initial aperture (the aperture when the surfaces are in contact at a single point) to that of the surface height determined for a tensile fracture of 1 m. First, the size effect on the standard deviation of the initial aperture was analyzed for fractures with and without shearing. Next, by taking aperture data at constant intervals to establish a flow area, water flow was simulated for fractures during both normal closure and closure after shearing, by solving Reynolds equation to determine the hydraulic aperture. When the fracture is closed without shearing and has the same mean aperture, the effect of the fracture size on the hydraulic aperture disappears if the fracture is larger than about 0.2 m, since beyond this size the standard deviation of the initial aperture is almost independent of the fracture size. When the fracture is closed after shearing, the hydraulic conductivity shows remarkable anisotropy, which becomes more significant with both shear displacement and closure. However, the relation between the hydraulic aperture normalized by the mean aperture and the mean aperture normalized by the standard deviation of the initial aperture is almost independent of both the fracture size and shear displacement when the shear displacement is less than about 3.1% of the fracture size, at which point the standard deviation of the initial aperture of the sheared fracture is almost independent of the fracture size.  相似文献   

3.
Water inflow into rock excavations is a complex three-dimensional (3-D) problem influenced by a number of processes, such as stress–permeability coupling, groundwater degassing, bubble trapping, temperature effects or turbulence effects. Results from inflow experiments in the field show that when going from a slim borehole to a larger diameter hole, the inflow into the larger hole is often less than predicted; the explanation for this is not yet fully known. A single process or a combination of processes may be responsible for reduction of inflow into the larger diameter holes. In this study, a coupled hydro-mechanical, 3-D discrete element analysis has been conducted with the objective of gaining a better understanding of the influence of effective stress redistribution induced by excavation and related inflow into a cylindrical opening in a fractured rock mass. Matrix and fracture data from the Äspö Hard Rock Laboratory in Sweden have been used as input for the model. Several aspects related to fracture inflow into underground excavations have been studied (hydro-mechanical coupling, uncertainty in rock mass characteristics, relevance of non-linear fracture behaviour and influence of the excavation diameter). Results of this study show that stress–permeability coupling is one of the causes for the usually less than expected inflow into larger diameter holes.  相似文献   

4.
大型地下石油洞库自然水封性应力-渗流耦合分析   总被引:3,自引:0,他引:3  
根据地质条件,地下水封石油洞库可以选择自然水封或人工水封方式。以中国首个大型地下水封石油洞库为背景,开展了岩石三轴压缩试验和现场水文试验,获得了洞库围岩变形特征和渗透特性,采用应力-渗流耦合理论,分析了该地下石油洞库的自然水封性与稳定性。岩石三轴实验表明,岩体受剪作用下体积变化情况与剪胀性密不可分。现场水文试验表明,洞库渗透系数存在一定的不确定性。通过数值分析得出如下结论:自然水封条件下,洞库水位将不满足水封要求;地下水封洞库实现水封条件的水头受水力梯度和岩体渗透性影响;洞库施工期涌水量与渗透系数存在着分形关系;施工期各洞室拱顶沉降为19~32 mm,水平收敛为16~35 mm。研究成果为中国首个大型地下水封石油洞库工程建设提供了科学依据。  相似文献   

5.
Uncontrolled groundwater outbursts from underlying limestone aquifers into mining excavations present a significant safety challenge for underground coal mining in China. Although these mining hazards have been known for decades, the mechanism for groundwater outbursts remains elusive. A fully coupled flow-stress-damage model is presented to simulate the progressive development of fractures and the associated groundwater flow under incremental loading conditions resulting from mining processes. The model is based on classical theories of porous media flow and damage mechanics and importantly links changes in permeability with the accumulation of damage in following the complete stress–strain process. This coupled flow-stress-damage model is applied to examine the influence of mining advance on the initiation, extension, and evolution of an outburst conduit as it develops adjacent to the mine panel. Fractures are shown to initiate both from the wings of the excavation in shear, and from the center of the floor span, in extension. The growth of the extensile fractures is stunted by the presence of a high stress abutment, but the wing fractures extend, with one fracture becoming dominant. As the dominant fracture develops into the underlying over-pressured zone, water pressures transmitted along the now-open conduit reduce effective stresses and develop rapid heave displacements within the floor. The result is a groundwater outburst. The modeling is tuned to the results of laboratory experiments and follows the evolution of a viable outburst path. Observations corroborate with field measurements of permeability pre- and post-mining and are strong indicators of the veracity of the approach.  相似文献   

6.
工程活动诱发的围岩结构变化对隧道突涌水的影响分析   总被引:1,自引:0,他引:1  
随着深大交通、水利水电隧道(洞)的大量建设及地下矿产的不断延深开采,隧道突水灾害问题愈加严重。工程活动作为诱发突水的必要条件,其导致的围岩结构变化将对围岩力学、水力学性质及隧道附近渗流场产生重要影响。从工程扰动诱发的围岩损伤及其导致的渗透性演化入手,利用理论解析法研究了隧道围岩结构变化对涌水量及水压力分布的影响。结果表明:损伤区厚度对隧道涌水量和孔隙水压力分布具有较大影响,损伤区范围越大,发生突水的危险性越大;损伤区渗透系数对隧道涌水量的影响阈值约为2个数量级,之后其对涌水量的影响较弱;注浆圈厚度越大、渗透系数越低,隧道涌水量越小,但并不是注浆圈厚度越大、渗透性越低,涌水量的控制效果就越好,而是存在一个最优效果的设计值。  相似文献   

7.
The determination of the degradation state of underground concrete tunnels is a crucial issue for maintaining and monitoring the performance of these infrastructures. In particular, if the tunnel is totally or partially submerged, concrete deterioration and consequent changes in both lining thickness and hydraulic conductivity can have dramatic effects on the amount of water inflow, leading to an increase in maintenance costs as well as to possible interruption of the infrastructure serviceability. The hydraulic conductivity of the concrete lining is here proposed as a proxy of the overall degradation state of the structure, being this property directly correlated to porosity and to the presence of interconnected fissures and cracks.The aim of this study is to propose a simple and completely non-destructive method to estimate the hydraulic conductivity of tunnel lining concrete. Provided the availability of easy-to-collect in situ geometrical and hydrogeological data (i.e. tunnel geometry, water inflow, water table level), the method relies on a back analysis to estimate the hydraulic conductivity of the concrete, performed via the finite element method to solve the seepage equations in porous media. Ground Penetration Radar technique is coupled to the modelling approach to gain accurate data about the current lining thickness.The proposed method has been applied to the study of a real case of underground tunnel, used to prove the model reliability. Moreover, once estimated the hydraulic conductivity and thickness of the concrete, the model can be used to generate curves linking the total water inflow in the tunnel as a function of the groundwater level variations, allowing a real-time monitoring of the current hydraulic state of the infrastructure.This methodology, which can be considered of general validity and easy to be extended for the study of any underground tunnel, provides a simple and effective tool useful to prioritize maintenance works and to evaluate the consequences of different hydraulic scenarios.  相似文献   

8.
杨松  刘博  王力生  张开传 《工业建筑》2007,37(4):13-15,24
北京地区的基坑降水一般大多采用管井抽水的方法,由于在抽水过程中会将土层中的细颗粒带出,容易引起周边建筑物、道路、地下管线的不均匀沉降,另外,大量抽取地下水对北京地区的地下水资源也是一个非常大的浪费。采用抽渗结合法进行基坑降水,利用水力坡度的原理,将上层的滞水和潜水引到深层渗透系数较大的砂卵石层中,既可避免长时间抽水不断地将土层中大量的细颗粒带出,也可避免地下水资源被大量的浪费。  相似文献   

9.
The hydro-mechanical behavior of a pilot underground crude oil storage facility in granite in China is analyzed using Discrete Element Method (DEM). Characterization of hydro-mechanical coupling behavior of rock mass was performed using geological investigation, laboratory test, field monitoring and case study. Geological investigations were performed to obtain the geometrical properties of joints. Direct shear tests were performed to obtain the mechanical behavior of joints. A case study was performed to obtain the hydro-mechanical parameters of rock mass around the facility. Discrete element method was employed to assess the hydro-mechanical behavior of the facility. The groundwater pressure distribution and flow rate of the facility under different water curtain pressures were obtained. The groundwater inflow, deformation and stability of the caverns were obtained through the numerical simulations. It was found that the water seal property could not maintain if there is no water curtain system for the facility. The groundwater flow rate increases with the water curtain pressure. Both groundwater flow rate and crown settlement from this study are comparable to those from field measurements. However, the simulated flow rate and crown settlement are less than those predicted using empirical equations, due to the interaction between neighboring caverns and the effect of groundwater table dropdown.  相似文献   

10.
模拟了一个野外实际入渗试验的岩体裂隙网络及其中的渗流。通过逆方法建立岩体三维裂隙网络模型,其指导原则是使模型能够再现野外通过露头和钻孔所观察到的裂隙现象。逆方法由于可以对模拟和实测裂隙进行相同条件统计抽样,因此避免了实测数据统计分析中复杂的误差矫正。裂隙面状渗流分析采用了任意多边形有限差分法。讨论了通过模型校正确定裂隙导水系数的方法,进行了随机模型重复实现,验证了模型的稳定性。  相似文献   

11.
A methodology for addressing the DECOVALEX III Bench Mark Test 2 is presented. Hydro-mechanical (HM) modelling has been conducted on fracture networks generated from fracture length and density statistics, which have been described by a power law. For each rock formation in the test, effective hydraulic conductivity tensors have been derived for a range of mechanical parameters and depths below ground level. The upscaled hydraulic conductivities have been used in a site scale continuum model of groundwater flow and transport to assess performance indicators, including time of travel from repository to ground surface. Preliminary results indicate that interpretation of the fracture length and density data can have a significant effect on upscaling calculations, including the determination of a suitable hydraulic representative elementary volume. HM modelling shows that there is a non-linear decrease in the change of fracture aperture with depth, and that although large aperture fractures remain at depth, the majority of fractures tighten to almost the residual aperture at about 750 m below ground level. Consequently, anisotropy of the effective hydraulic conductivity also changes with depth. Flow and transport modelling at the field scale indicates that, of the controls investigated, mechanical properties of the rock have the greatest influence on solute travel times.  相似文献   

12.
Nonlinear flow behavior of fluids through three-dimensional(3 D) discrete fracture networks(DFNs)considering effects of fracture number, surface roughness and fracture aperture was experimentally and numerically investigated. Three physical models of DFNs were 3 D-printed and then computed tomography(CT)-scanned to obtain the specific geometry of fractures. The validity of numerically simulating the fluid flow through DFNs was verified via comparison with flow tests on the 3 D-printed models. A parametric study was then implemented to establish quantitative relations between the coefficients/parameters in Forchheimer's law and geometrical parameters. The results showed that the 3 D-printing technique can well reproduce the geometry of single fractures with less precision when preparing complex fracture networks, numerical modeling precision of which can be improved via CT-scanning as evidenced by the well fitted results between fluid flow tests and numerical simulations using CT-scanned digital models. Streamlines in DFNs become increasingly tortuous as the fracture number and roughness increase, resulting in stronger inertial effects and greater curvatures of hydraulic pressure-low rate relations, which can be well characterized by the Forchheimer's law. The critical hydraulic gradient for the onset of nonlinear flow decreases with the increasing aperture, fracture number and roughness,following a power function. The increases in fracture aperture and number provide more paths for fluid flow, increasing both the viscous and inertial permeabilities. The value of the inertial permeability is approximately four orders of magnitude greater than the viscous permeability, following a power function with an exponent a of 3, and a proportional coefficient β mathematically correlated with the geometrical parameters.  相似文献   

13.
The closure of 41-mm hydraulic fractures under normal stress in both loading and elastic closure (unloading) was estimated according to the formula proposed by Brown and Scholz and based on data measured for the initial aperture. By introducing the concept of an effective/ineffective initial aperture and by assuming Gaussian and χ2 probability density functions (PDFs) of the initial aperture, the normal stress versus closure curve was determined from the standard deviation (SD) and the spectral moments of the initial aperture and the ratio of the mean effective initial aperture to the SD of the initial aperture. The results showed that the non-linearity in the normal stress versus closure curve at large normal stresses was reproduced better by the χ2 PDF of the initial aperture than the Gaussian PDF for both loading and elastic closure. Furthermore, based on the ratio of the mean effective initial aperture to the SD of the initial aperture determined for the hydraulic fractures, the effect of size on the normal stress versus closure curve was estimated for fracture areas in a tensile fracture of 1 m. The results showed that closure increases with the size of the fracture area, and that the effect of size on the closure of the fracture is governed by the SD of the initial aperture.  相似文献   

14.
 以我国首个大型地下水封石油洞库工程为背景,基于离散介质流固耦合理论,开展地下石油洞库水封性和稳定性评价。通过室内岩石三轴试验和结构面剪切–渗流耦合试验,获得岩石的弹性模量、泊松比和结构面的剪切模量、水力开度等参数。根据施工巷道开挖过程中围岩变形和水位变化情况,对围岩参数进行反分析,获得较为可靠的洞库围岩参数。综合上述成果,分析地下石油洞库的水封性和稳定性特征。研究发现,在水幕压力为50 kPa条件下,该地下水封石油洞库稳定水位位于主洞室上方约60 m,且大于洞内储存介质的压力,满足洞库水封条件;洞库各主洞室位移为9~30 mm,达到洞室稳定相关控制标准;分析8#和9#主洞室边墙附近的水平应力、竖向应力、法向应力和切向应力的变化,并将其划分为3个区域,即松动区、扰动区和未扰动区,其中洞室松动区范围约为6 m。研究为大型地下石油洞库水封性和稳定性评价提供理论依据。  相似文献   

15.
During tunnel excavation in a jointed rock mass, significant joint closure takes place in the immediate vicinity of tunnel due to joint effective normal stress increase, and the equivalent hydraulic conductivity is largely reduced within a zone approximately one tunnel-radius thick around the tunnel. A significant pressure drop takes place across this zone, and the actual raise of pore-water pressure in the surrounding rock mass is steeper than that estimated from the analytical solution that considers the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents a numerical modeling of the mechanical and hydraulic behavior of a jointed rock mass around a tunnel and provides estimates of the groundwater inflow rate to be compared to those estimated from generally used analytical solutions. The numerical analysis results presented here verify the validity of the analytical method described in the Part 1 paper for estimating groundwater inflow rate into a tunnel considering excavation-induced hydraulic conductivity reduction.  相似文献   

16.
This paper examines the effect of different geological and mining factors on roof stability in underground coal mines by combining field observations, laboratory testing, and numerical modeling. An underground coal mine in western Pennsylvania is selected as a case study mine to investigate the underlying causes of roof falls in this mine. Three-dimensional distinct element analyses were performed to evaluate the effect of different parameters, such as the variation of immediate roof rock mass strength properties, variation of discontinuity mechanical properties, orientations and magnitudes of the horizontal in-situ stresses, and the size of pillars and excavations on stability of the immediate roof. The research conducted in this paper showed that the bedding planes play an important role on the geo-mechanical behavior of roofs in underground excavations. Therefore, an appropriate numerical modeling technique which incorporates the effect of discontinuities should be employed to simulate the realistic behavior of the discontinuous rock masses such as the layered materials in roof strata of the underground coal mines. The three-dimensional distinct element method used in this research showed the capability of this technique in capturing the important geo-mechanical behavior around underground excavations.  相似文献   

17.
In recent years, geological disposal of radioactive wastes is considered to be the most promising option, which requires the understanding of the coupled mechanical, hydraulic and thermal properties of the host rock masses and rock fractures. The hydro-mechanical behavior and properties of rock fractures are usually determined by laboratory experiments on fracture specimens that serve as the basic building block of the constitutive models of fractured rock masses.Laboratory testing of rock fractures involve a number of technical issues that may have significant impacts on the reliability and applicability of the testing results, chief among them are the quantitative estimation of the evolutions of hydraulic transmissivity fields of fractures during shear under different normal constraint conditions, and the sealing techniques when fluid flow during shear is involved. In this study, a new shear-flow testing apparatus with specially designed fluid sealing techniques for rock fractures were developed, under constant normal load (CNL) or constant normal stiffness (CNS) constraint. The topographical data of all fracture specimens were measured before testing to constitute the geometrical models for simulating the change of mechanical aperture distributions during shearing. A number of shear-flow coupling tests were carried out on three kinds of rock fracture specimens to evaluate the influence of morphological properties of rock fractures on their hydro-mechanical behaviour. Some empirical relations were proposed to evaluate the effects of contact area and surface roughness on the behavior of fluid flow through rock fractures.  相似文献   

18.
Fluid flow anisotropy in a single rock fracture during a shear process is an important issue in rock mechanics and is investigated in this paper using FEM modelling, considering evolutions of aperture and transmissivity with shear displacement history. The distributions of fracture aperture during shearing with large shear displacements were obtained by numerically manipulating relative translational movements between two digitalized surfaces of a rock fracture replica, with changing sample sizes. The scale dependence of the fluid behaviour and properties were also investigated using a fractal approach.The results show that the fracture aperture increases anisotropically during shear with a more pronounced increase in the direction perpendicular to the shear displacement, causing significant fluid flow channelling effect, as also observed by other researchers. This finding may have important impacts on the interpretation of the results of coupled hydro-mechanical experiments for measurements of hydraulic properties of rock fractures because the hydraulic properties are usually calculated from flow test results along the shear directions while ignoring the more significant anisotropic flow perpendicular to the shear direction. This finding indicates that the coupled stress-flow tests of rough rock fractures should be conducted in true three-dimensions if possible. Significant change in fracture aperture/transmissivity in the out-of-plane direction should be properly evaluated if two-dimensional tests are conducted. Results obtained from numerical simulations also show that fluid flow through a single rough fracture changes with increasing sample size and shear displacements, indicating that representative hydro-mechanical properties of the fractures in the field can only be more reliably determined using samples of large enough sizes beyond the stationarity threshold and tested with larger shear displacements.  相似文献   

19.

Fractures play an important role in controlling the hydraulic conductivity of rock masses, and the aperture significantly influences the magnitude of fracture seepage. In this study, field measurements and experiments were conducted at a well-exposed granite fracture site in the Beishan area, China. Several types of single natural fractures were selected to remove the weathered surface and expose the fresh fractures. Subsequently, measuring ruler dispersion-tangent middle axis (MRD-TMA) method was developed to measure the fracture aperture and capture fracture geometry. Then, electrical resistivity tomography (ERT) technique was employed to investigate the seepage properties of these fractures. The results reveal that MRD-TMA method achieved good flexibility and accuracy in the current measurement of fracture aperture, and ERT is a useful tool for detecting the seepage properties of fractures in hard rock masses. Combined with field observations, the filling form of fractures can be categorized according to the ERT inversion results, as follows: open-weak filling, open filling, loose filling, and fully cemented-closed form, whose seepage properties decrease as the filling density increases. Generally, the open-weak filling is the main water channel in a fracture network, while the fully cemented-closed type is a water-blocking fracture and typically exhibits a pseudo-fracture with a large surface opening. In summary, the method for obtaining the morphological characteristics of the aperture can provide a low-cost and time-efficient approach for fracture logging in the field, and ERT technique provides a reference for the detection of potential hazards caused by connected water-conducting fractures in rock engineering.

  相似文献   

20.
The grouting results for a tunnel at a depth of 450 m in crystalline rock at Äspö HRL were studied. The aims were to investigate whether the methodology used resulted in a successful grouting design and producing a sufficiently dry tunnel, and whether grout penetration and inflow into the finished tunnel corresponded to the predictions. An analysis was made of data from an original cored borehole, drilled before the tunnel was constructed and mapped thoroughly with regard to fractures and transmissivities. The predicted inflow into the tunnel was calculated and found to be four times higher than the measured inflow. The latter was 5 l/min along the 70 m tunnel, considered to be a good result at the current depth. New cored control boreholes were drilled along a section of the tunnel. The inflow positions and quantities in these holes, and the positions of grout found in the corresponding cores, were compared with the data from the original borehole. It was found that at the predicted positions of larger fractures, grout was observed and there was no inflow, showing that these had been successfully sealed. At the predicted positions of small fractures, no grout was visible in the cores, and small inflows showed that the grout had not sealed these fractures. The results indicated that cement-based grout successfully sealed fractures down to a hydraulic aperture of about 50 μm but not below 30 μm. This concurs with the initial design aimed at sealing fractures larger than 50 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号