首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surfactants of sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) are used in multi-walled carbon nanotubes (MWCNT) aqueous solution respectively due to the hydrophobic nature of MWCNT. Thermal conductivities of nanofluid solutions are measured via the LAMBDA measuring system by transient hot wire method and compared as function of dispersing two different surfactants. MWCNT (hereinafter sometime referred to as CNTs) nanofluid gets a good dispersion and long time stability with both surfactants within 3/1 relative ratio mixture. However, the thermal conductivity of nanofluid decreases with increasing the concentration of both surfactants, and CNT nanofluid with SDBS exhibits better thermal conductivity than that with SDS dispersant. Finally the proper mixture ratio of CNT nanofluid with SDBS and pH value is examined and results show that 0.5 wt.% CNT nanofluids with 0.25 wt.% SDBS, at pH  9.0 condition display the best thermal performance which increases by 2.8% totally on thermal conductivity compared with that of base fluid distilled water (DW).  相似文献   

2.
The thermal performance of a cylindrical screen mesh heat pipe with hybrid nanofluid was experimentally investigated. The hybrid nanofluid was prepared by mixing Al2O3 and CuO nanoparticles with deionised water. The heat pipe was fabricated with straight copper tube of dimensions 300 mm length, 12.5 mm outer diameter and 1 mm thickness. The wick structure in the heat pipe was created by a three layer copper screen mesh of 100 mesh size. The heat input to the heat pipe was varied from 50 W to 250 W in five equal steps. The heat pipe was tested with three hybrid nanofluids made with combinations of Al2O3 and CuO nanoparticle in DI water (Al2O3 75%–CuO 25%, Al2O3 50%–CuO 50% and Al2O3 25%–CuO 75%). The tested hybrid nanofluids were made with 0.1% volume concentration of Al2O3 and CuO nanoparticle combination in deionised water. The results of the investigation showed that for the maximum heat load of 250 W considered in this work, the thermal resistance of the hybrid nanofluid with combination, Al2O3 25%–CuO 75%, showed 44.25% reduction compared to deionised water. The reduction in thermal resistance is due to the formation of porous coating on the wick surface which increases the wettability and surface roughness thereby creating more nucleation sites as seen in the SEM images. From the experimental investigation, it was observed that hybrid nanofluids are alternative to the conventional working fluids in heat pipes for electronic cooling applications.  相似文献   

3.
Experiments were conducted to investigate the cooling performance of water-based Boehmite (AlOOH · xH2O) nanofluid in a hybrid photovoltaic (PV) cell. A Perspex plate consists of 40 parallel rectangular microchannels with a hydraulic diameter of 783 μm, a length of 24 cm, a width of 1.8 mm and a depth of 500 μm attached to the back of the cell. Cooling performances of water, as the base fluid, and three different concentrations of nanofluid (0.01, 0.1 and 0.3 wt.%) were compared. The nanofluid thermal performance has been assessed from the obtained results for outlet flow temperature and the average PV surface temperature. The average PV surface temperature decreased from 62.29 °C to 32.5 °C at zero and 300 ml/min of flow rate for 0.01 wt.% nanofluid, respectively. Moreover, the highest improving in the electrical efficiency was achieved about 27% for 0.01 wt.% concentration of the nanofluid at this flow rate.  相似文献   

4.
The results are reported of an investigation of the heat transfer characteristics and entropy generation for a graphene nanoplatelets (GNP) nanofluid with specific surface area of 750 m2/g under laminar forced convection conditions inside a circular stainless steel tube subjected to constant wall heat flux. The analysis considers constant velocity flow and a concentration range from 0.025 wt.% to 0.1 wt.%. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, thermal performance factor and entropy generation is investigated. An enhancement in thermal conductivity for GNP of between 12% and 28% is observed relative to the case without nanoparticles. The convective heat transfer coefficient for the GNP nanofluid is found to be up to 15% higher than for the base fluid. The heat transfer rate and thermal performance for 0.1 wt.% of GNP nanofluid is found to increase by a factor of up to 1.15. For constant velocity flow, frictional entropy generation increases and thermal entropy generation decreases with increasing nanoparticle concentration. But, the total entropy generation tends to decrease when nanoparticles are added at constant velocity and to decrease when velocity rises. Finally, it is demonstrated that a GNP nanofluid with a concentration between 0.075 wt.% and 0.1 wt.% is more energy efficient than for other concentrations. It appears that GNP nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.  相似文献   

5.
This paper is mainly concerned about the pool boiling heat transfer behavior of multi-walled carbon nanotubes (CNTs) suspension in pure water and water containing 9.0% by weight of sodium lauryl sulphate anionic surfactant (SDS). Three different concentrations of 0.25%, 0.5% and 1.0% by volume of CNT dispersed with water and water containing 9.0% by weight of sodium lauryl sulphate anionic surfactant (SDS) were prepared and boiling experiments were conducted over a stainless steel flat plate heater of size 30 mm2 and 0.44 mm thickness. The test results exhibit that the addition of carbon nanotubes increases boiling heat transfer coefficients of the base fluids. At a given heat flux of 500 kW/m2, the enhancement of heat transfer coefficient was found to be 1.5, 2.6 and 3.0 times of water corresponding to 0.25%, 0.5% and 1.0% concentration of CNT by volume in water, respectively. In water–CNT–surfactant nanofluid, it was found that 0.5% of CNT concentration gives the highest enhancement of 1.7 compared with water. In both water and water–surfactant base fluids, it was observed that the enhancement factor for 0.25% of CNT first increases up to the heat flux of 66 kW/m2 and then decreases for higher heat fluxes. Further, the overall heat transfer coefficient enhancement in the water–CNT nanofluids is approximately two times higher than that in the water–CNT–surfactant nanofluids. With increasing heat flux, however, the enhancement was concealed due to vigorous bubble generation for both water–CNT and water–CNT–surfactant nanofluids. Foaming was also observed over the liquid-free surface in water–CNT–surfactant nanofluids during the investigation. No fouling over the test-section surface was observed after experimentation.  相似文献   

6.
The engine coolant (water/ethylene glycol mixture type) becomes one of the most commonly used commercial fluids in cooling system of automobiles. However, the heat transfer coefficient of this kind of engine coolant is limited. The rapid developments of nanotechnology have led to emerging of a relatively new class of fluids called nanofluids, which could offer the enhanced thermal conductivity (TC) compared with the conventional coolants. The present study reports the new findings on the thermal conductivity and viscosity of car engine coolants based silicon carbide (SiC) nanofluids. The homogeneous and stable nanofluids with volume fraction up to 0.5 vol.% were prepared by the two-step method with the addition of surfactant (oleic acid). It was found that the thermal conductivity of nanofluids increased with the volume fraction and temperature (10–50 °C), and the highest thermal conductivity enhancement was found to be 53.81% for 0.5 vol.% nanofluid at 50 °C. In addition, the overall effectiveness of the current nanofluids (0.2 vol.%) was found to be ~ 1.6, which indicated that the car engine coolant-based SiC nanofluid prepared in this paper was better compared to the car engine coolant used as base liquid in this study.  相似文献   

7.
In this study, the cooling performance of Al2O3–H2O nanofluid was experimentally investigated as a much better developed alternative for the conventional coolant. For this purpose the nanofluid was passed through the custom-made copper minichannel heat sink which is normally attached with the electronic heat source. The thermal performance of the Al2O3–H2O nanofluid was evaluated at different volume fraction of the nanoparticle as well as at different volume flow rate of the nanofluid. The volume fraction of the nanoparticle varied from 0.05 vol.% to 0.2 vol.% whereas the volume flow rate was increased from 0.50 L/min to 1.25 L/min. The experimental results showed that the nanofluid successfully has minimized the heat sink temperature compared to the conventional coolant. It was noticed also that the thermal entropy generation rate was reduced via using nanofluid instead of the normal water. Among the other functions of the nanofluid are to increase the frictional entropy generation rate and to drop the pressure which are insignificant compared to the normal coolant. Given the improved performance of the nanofluid, especially for high heat transportation capacity and low thermal entropy generation rate, it could be used as a better alternative coolant for the electronic cooling system instead of conventional pure water.  相似文献   

8.
Nanofluid is a new type of heat transfer fluid with superior thermal performance characteristics, which is very promising for thermal engineering applications. This paper presents new findings on the thermal conductivity, viscosity, density, and specific heat of Al2O3 nanoparticles dispersed into water and ethylene glycol based coolant used in car radiator. The nanofluids were prepared by the two-step method by using an ultrasonic homogenizer with no surfactants. Thermal conductivity, viscosity, density, and specific heat have been measured at different volume concentrations (i.e. 0 to 1 vol.%) of nanoparticles and various temperature ranges (i.e. from 10 °C to 50 °C). It was found that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. However, specific heat of nanofluid was found to be decreased with the increase of nanoparticle volume concentrations. Moreover, by increasing the temperature, thermal conductivity and specific heat were observed to be intensified, while the viscosity and density were decreased.  相似文献   

9.
Heat transfer coefficient and friction factor of TiO2 nanofluid flowing in a double pipe heat exchanger with and without helical coil inserts are studied experimentally. The experiments are conducted in the range of Reynolds number from 4000 to 15,000 and in the volume concentration range from 0.0004% to 0.02%. The base fluid is prepared by considering 40% of ethylene glycol and 60% of distilled water. The heat transfer coefficient and friction factor get enhanced by 10.73% and 8.73% for 0.02% volume concentration of nanofluid when compared to base fluid flowing in a tube. Heat transfer coefficient and friction factor further get enhanced by 13.85% and 10.69% respectively for 0.02% nanofluid when compared to base fluid flowing in a tube with helical coil insert of P/d = 2.5. The measured values of heat transfer coefficient and friction factor are compared with the published literature. Based on the experimental data, generalized correlations are proposed for Nusselt number and friction factor. The results are presented in graphical and tabular form. Uncertainty analysis is also carried out and the experimental error is in the range of ± 10%.  相似文献   

10.
The effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector was investigated experimentally. The experiments were carried out using 0.2 wt.% MWCNT with various pH values, 3.5, 6.5, and 9.5, and Triton X-100 as additive. The procedure of ASHRAE standard was used for testing the thermal performance of flat-plate solar collector. Results show that by increasing or decreasing the pH values with respect to the pH of isoelectric point, the positive effect of nanofluid on the efficiency of solar collector is increased.  相似文献   

11.
This paper deals with spherical nanoparticles size effects on thermal performance and pressure drop of a nanofluid in a trapezoidal microchannel-heat-sink (MCHS). Eulerian–Eulerian two-phase numerical approach is utilized for forced convection laminar, incompressible and steady three dimensional flow of copper-oxide nanoparticles with water as base fluid at 100 to 200 nm diameter and 1% to 4% volume concentration range. Continuity, momentum, energy and volume conservation equations are solved at whole of the computational domain via finite volume method. Obtained results signify that pressure drop increases 15% at Re = 500 and 1% volume concentration while nanoparticles diameter increases from 100 to 200 nm. By increasing volume concentration, nanoparticles size effect becomes more prominent and it is observed that increment rate of pressure drop is intensified for above 150 nm particles diameter. Unlike the pressure drop, heat transfer decreases with an increase in nanoparticles diameter. Also, it is observed that with an increase in nanoparticles diameter, average Nusselt number of base fluid decreases more than that of the nanoparticles and this signifies that base fluid has more efficacy on thermal performance of copper-oxide nanofluid.  相似文献   

12.
The present study aims to identify effects due to uncertainties in effective dynamic viscosity and thermal conductivity of nanofluid on laminar natural convection heat transfer in a square enclosure. Numerical simulations have been undertaken incorporating a homogeneous solid–liquid mixture formulation for the two-dimensional buoyancy-driven convection in the enclosure filled with alumina–water nanofluid. Two different formulas from the literature are each considered for the effective viscosity and thermal conductivity of the nanofluid. Simulations have been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Raf = 103–106 and the volumetric fraction of alumina nanoparticles, ? = 0–4%. Significant difference in the effective dynamic viscosity enhancement of the nanofluid calculated from the two adopted formulas, other than that in the thermal conductivity enhancement, was found to play as a major factor, thereby leading to contradictory results concerning the heat transfer efficacy of using nanofluid in the enclosure.  相似文献   

13.
An influence of multi-walled carbon nanotube (MWCNT) based aqueous nanofluids with different concentrations on the heat transport and the relevant pressure distribution in oscillating heat pipe (OHP) has been investigated. The present paper describes the heat transfer phenomena in terms of thermal resistance, pressure and frequency of pressure fluctuation in multi-loop oscillating heat pipe (OHP) charged by aqueous nanofluids with MWCNT loadings of 0.05 wt.%, 0.1 wt.%, 0.2 wt.% and 0.3 wt.%. The multi-loop OHP with 3 mm inner diameter has been conducted in the experiment at 60% filling ratio. Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time. The investigation shows that the 0.2 wt.% MWCNTs based aqueous nanofluids obtain maximum number of the fluctuation frequency and low thermal resistance at any evaporator power input. Based on the experimental results, we discuss the reasons for enhancement and decrement of thermal characteristics of the nanofluids.  相似文献   

14.
《Journal of power sources》2006,162(2):893-899
Electrolytic zinc powders were prepared in 12 M KOH, 4 wt.% zinc oxide solutions in the presence of different kinds of surfactant and organic additives using the galvanostatic technique. Then the electrochemical behavior of zinc was investigated using the sweep voltametry technique. Zinc samples electrolyzed in the presence of cationic cetyl trimethyl ammonium bromide (Zn-CTAB), have maximum corrosion rate. Furthermore, scanning electron microscopy revealed the highest surface area. Zinc deposited with anionic surfactants, sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS), have high dendritic and secondary growth. More zinc ions electrolyzed on the cathode electrode in the presence of SDBS compared with SDS. We suppose the Benzene molecule in SDBS changes morphology, thus effects of the benzene molecule is investigated by utilizing several organic compounds during zinc electrodeposition. Naphthalene with 10 pi electrons at two fused rings decreases corrosion rate and needle growth of zinc deposited, compared to benzyl chloride which has 6 pi electrons. Enhanced delocalization of pi electrons by strongly activating group (–NH2) in the aniline molecule increases the corrosion rate and dendrites compared with benzyl chloride, which has the weakly activating group (–CH2Cl). The addition of chloro benzene with inactivating and electrodrawing group (–Cl) creates high surface area without any dendritic growth. The effects of electrolyte additives on the electrochemical capacity of AA-sized alkaline Zn-MnO2 batteries are verified. The addition of Triton X-100 in anode gel resulted in maximum electrical capacity. Anionic (SDBS and SDS) additives gave higher electrical capacity than cationic (CTAB). Also, the reaction mechanism for zinc electrodeposition in alkaline electrolytes and its dependence upon the presence of organic additives are discussed in detail.  相似文献   

15.
The present study aims to explore experimentally the influence of elevated inlet fluid temperature on the turbulent forced convective heat transfer effectiveness of using alumina–water nanofluid over pure water in an iso-flux heated horizontal circular tube at a fixed heating power. A copper circular pipe of inner diameter 3.4 mm was used in the forced convection experiments undertaken for the pertinent parameters in the following ranges: the inlet fluid temperature, Tin = 25 °C, 37 °C and 50 °C; the Reynolds number, Rebf = 3000–13,000; the mass fraction of the alumina nanoparticles in the water-based nanofluid formulated, ωnp = 0, 2, 5, and 10 wt.%; and the heating flux, qo = 57.8–63.1 kW/m2. The experimental results clearly indicate that the turbulent forced convection heat transfer effectiveness of the alumina–water nanofluid over that of the pure water can be further uplifted by elevating its inlet temperature entering the circular tube well above the ambient, thereby manifesting its potential as an effective warm functional coolant. Specifically, an increase in the averaged heat transfer enhancement of more than 44% arises for the nanofluid of ωnp = 2 wt.% as the inlet fluid temperature is increased from 25 °C to 50 °C.  相似文献   

16.
For applications such as cooling of electronic devices, it is a common practice to sandwich the thermoelectric module between an integrated chip and a heat exchanger, with the cold-side of the module attached to the chip. This configuration results thermal contact resistances in series between the chip, module, and heat exchanger. In this paper, an appraisal of thermal augmentation of thermoelectric module using nanofluid-based heat exchanger is presented. The system under consideration uses commercially available thermoelectric module, 27 nm Al2O3–H2O nanofluid, and a heat source to replicate the chip. The volume fraction of nanofluid is varied between 0% and 2%. At optimum input current conditions, experimental simulations were performed to measure the transient and steady-state thermal response of the module to imposed isoflux conditions. Data collected from the nanofluid-based exchanger is compared with that of deionized water.Results show that there exist a lag-time in thermal response between the module and the heat exchanger. This is attributed to thermal contact resistance between the two components. A comparison of nanofluid and deionized water data reveals that the temperature difference between the hot- and cold-side, ΔT = Th ? Tc  0, is almost zero for nanofluid whereas ΔT > 0 for water. When ΔT  0, the contribution of Fourier effect to the overall heating is approximately zero hence enhancing the module cooling capacity. Experimental evidence further shows that temperature gradient across the thermal paste that bonds the chip and heat exchanger is much lower for the nanofluid than for deionized water. Low temperature gradient results in low resistance to the flow of heat across the thermal paste. The average thermal contact resistance, R = ΔT/Q, is 0.18 and 0.12 °C/W, respectively for the deionized water and nanofluid. For the range of optimum current, 1.2 ? current ? 4.1 A, considered in this study, the COP ranges between 1.96 and 0.68.  相似文献   

17.
Experiments are conducted to investigate heat transfer characteristics of using nanofluid in a Loop Heat Pipe (LHP) as a working medium for heat input range from 20 W to 100 W. The experiments are carried out by manufacturing the LHP, in which the setup consists of a water tank with pump, a flat evaporator, condenser installed with two pieces of fans, two transportation lines (vapor and liquid lines), copper pipe sections for attachment of the thermocouples and power supply. The uniqueness of the current experimental setup is the vapor and liquid lines of LHP which are made of transparent plastic tube to visualize the fluid flow patterns. In this study, the LHP performance using silica (SiO2–H2O) nanofluid with particle volume fraction of 3% which was used as a coolant is examined. The experimental results are verified by simulation using Finite Element Method (FEM). The LHP performance is evaluated in terms of transient temperature distribution and total thermal resistance (Rt). Rt is estimated for both LHP using SiO2–H2O nanofluid and pure water cases under a steady state condition. The results reveal the average decrease of 28%–44% at heat input ranging from 20 W to 100 W in total thermal resistance of LHP using SiO2–H2O nanofluid as compared with pure water. Therefore, the presence of nanoparticles could greatly enhance the cooling of LHP. The experimental and simulation results are found in good agreement.  相似文献   

18.
Nucleate pool boiling of Al2O3 based aqueous nanofluid on flat plate heater has been studied experimentally. For boiling of nanofluid (< 0.1 vol.%) on heating surface with ratio of average surface roughness to average diameter of particles much less than unity when boiling continue to CHF, the heat transfer coefficient of nanofluid boiling reduces while critical heat flux (CHF) increases. CHF enhancement increased with volume fraction of nanoparticles. Atomic force microscope (AFM) images from boiling surface showed that after boiling of nanofluid the surface roughness increases or decreases depending on initial condition of heater surface. Changes in boiling surface topology during different regions of boiling, wettability and thermal resistance of heater surface owing to nanoparticles deposition cause to variations in nanofluids boiling performance.  相似文献   

19.
CuO–water nanofluids were prepared from non-spherical CuO nanoparticles by dispersing them in water through the aid of ultrasonication along with the use of Tiron as dispersant. Thermal conductivity enhancements of 13% and 44% have been obtained with 0.016 vol% CuO–water nanofluids at 28 °C and 55 °C respectively, which could be attributed to the high aspect ratio and Brownian motion of nanoparticles. Correlations have been developed to predict the influence of temperature (28–55 °C) and nanoparticles volume concentration (<0.016 vol%) on relative viscosity and thermal conductivity ratio. The results indicate the potential of this nanofluid for thermal management applications.  相似文献   

20.
《Journal of power sources》2006,153(2):345-349
The 12 V overcharge instability of the LiCoO2 cathode material was improved by the physical blending it with LiNi0.8Co0.1Mn0.1O2. Even though a Li-ion cell containing a LiCoO2 cathode did not exhibit thermal runaway at 12 V at the 1 C overcharging rate, it showed thermal runaway at the 2 C overcharging rate, and the cell surface temperature reached more than 400 °C. However, the LiCoO2 cell containing 40, 50, and 60 wt.% LiNi0.8Co0.1Mn0.1O2 did not exhibit thermal runaway at the 2 C overcharging rate. In conclusion, 60 wt.% LiNi0.8Co0.1Mn0.1O2 in the LiCoO2 cathode showed the lowest cell surface temperature of <90 °C even at a 3 C overcharging rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号