首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Upconversion (C) light-emitting photonic band gap materials (YBO3: Yb, Er) with inverse opal structure were prepared by a self-assembly technique in combination with a sol-gel method. The effect of the photonic stop-band on the upconversion luminescence of Er3+ ions has been investigated in the YBO3: Yb, Er inverse opals. Significant suppression of the green or red UC emission was detected if the photonic band-gap overlaps with the Er3+ ions emission band. We successfully achieved the color tuning of the UC optical properties of the inverse opal by controlling the structure of the photonic crystal.  相似文献   

2.
Inverse opal photonic crystals of Yb3+, Er3+ co-doped CaTiO3 (CaTiO3: Yb, Er) were prepared using self-assembled polystyrene templates combined with the infiltration of sol-gel precursor. The influence of the photonic band gap on upconversion emission of Er3+ has been investigated in the CaTiO3: Yb, Er inverse opals. Significant reduction of the upconversion emission was detected if the photonic band-gap overlaps with the Er3+ ions emission band.  相似文献   

3.
We have studied the optical properties of gold- and silver-infiltrated opal photonic crystals composed of close-packed SiO2 spheres ∼200 nm in diameter. The reflectivity spectra obtained are used to assess the photonic band gap of the crystals in the visible range. We present the characteristics of the emission induced in the opal photonic crystals by monochromatic and broadband light sources and calculated reflectances of the synthetic opal samples.  相似文献   

4.
We have measured emission spectra of opal photonic crystals infiltrated with ferroelectrics and phosphors. At a given excitation wavelength, the emission spectra of the infiltrated opals differ markedly from the spectrum of plain opal: the emission bands are redshifted, and extra peaks are present. The infiltration effect on the emission spectrum of the opal matrix can be accounted for by the shift of the photonic band gap.  相似文献   

5.
SiO2 opals of higher quality can be achieved by a procedure involving the stricter selection of SiO2 spheres. Monodispersity of the spheres is one of the major factors for obtaining opals with interesting optical properties and large size. In addition, the infiltration process of TiO2 into SiO2 opal in order to form inverse opal structures (see Figure) is discussed.  相似文献   

6.
Abstract

Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.  相似文献   

7.
In this work we study the influence of Fe ions doping concentration on the optical properties of ZnO inverse opals. The ZnO inverse opals were obtained by impregnating the PMMA opal template with a zinc acetate solution. After the solidification of this solution in the void spaces of the synthetic PMMA and the thermal removal of the PMMA template, it remained a regular 3-D ordered porous ZnO solid which constitutes an inverse opal. The ZnO:Fe inverse opals were obtained following the same procedure but using zinc acetate and iron nitrate solutions instead. Scanning Electron Microscopy (SEM) images show the close-packed self-assembly of PMMA opals, the surface morphology of ZnO inverse opals formed by spherical void spaces of 295 nm diameter, and a discontinuous surface morphology of the ZnO:Fe inverse opals. The XRD diffractogram of ZnO inverse opals shows peaks characteristic of ZnO with wurtzite phase, and the micro-Raman spectrum shows phononic lines corresponding also to the same crystallographic structure. The energy band gap of ZnO and ZnO:Fe inverse opals were calculated from their absorption spectra giving the values of 3.2 and 2.4 eV, respectively.  相似文献   

8.
We have studied the optical properties of opal photonic crystals infiltrated with the M0.35Zn0.65Fe2O4 (M = Ni, Co) ferrites. The crystals consisted of amorphous SiO2 nanospheres. The visible reflectivity spectra of the crystals were used to determine parameters of their photonic band gap and their refractive index.  相似文献   

9.
Yang Z  Zhu K  Song Z  Zhou D  Yin Z  Qiu J 《Applied optics》2011,50(3):287-290
We obtained upconversion (UC) light-emitting photonic materials (YbPO(4):Er) with an inverse opal structure by the self-assembly technique in combination with a solgel method. The effect of the photonic stopband on the UC luminescence of the (2)H(11/2), (4)S(3/2)→(4)I(15/2), and (4)F(9/2)→(4)I(15/2) transitions of Er(3+) has been observed in the inverse opals of the Er(3+)-doped YbPO(4). Significant suppression of the UC emission was detected if the photonic bandgap overlapped with the Er(3+) ions emission band, while enhancement of the UC emission occurs if the emission band appears at the edge of the bandgap.  相似文献   

10.
This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.  相似文献   

11.
Incorporating noble metal nanoparticles (NPs) and oxides has been proved to be an effective method to tune the optical properties of silica based materials. In this paper the optical and photocatalytic properties have been studied for ZnO/SiO2 modified with Au or NiO nanoparticles. Changes in the optical properties of semiconductor ZnO particles have been observed due to the deposition of coloured Au and NiO nanoparticles by reducing the band gap energy and thus extending light absorption to visible domain. The excellent surface characteristics of NiO/ZnO/SiO2 and Au/ZnO/SiO2 favour the adsorption behaviour of these materials and limit the recombination of electron–holes pairs. Crystal Violet degradation under VIS light proved to have higher efficiency in the presence of Au/ZnO/SiO2 (97%) than for NiO/ZnO/SiO2 (60%).  相似文献   

12.
反蛋白石结构光子晶体因具有完全光子带隙、制备材料广泛、特殊的周期结构、大的比表面积和连通的孔洞结构,近年来在自发辐射的调制、提高光催化反应速率和染料敏化太阳能电池反应速率等领域成为研究热点之一,并且在光、电、催化、传感、显示、检测等领域有着巨大的应用价值。介绍了反蛋白石结构光子晶体的基本概念及制备方法,阐述了反蛋白石结构在材料自发辐射的调制、能量传递的调制、促进物理化学反应、外界环境响应材料等方面的作用及其应用。  相似文献   

13.
We have studied light scattering in synthetic opal crystals infiltrated with ferroelectric sodium nitrite, NaNO2, and have analyzed simple models for the energy band structure of photonic crystals. Expressions have been derived for the group velocity of photons whose energy is close to the photonic band gap. Our results indicate that the infiltration of photonic crystals with NaNO2 markedly increases the Raman scattering intensity.  相似文献   

14.
Zn2SiO4:Tb nanoparticles were prepared by sol-gel-microwave heating for the first time. X-ray powder diffraction (XRD) analysis confirmed the formation of Zn2SiO4 in willemite structure. Field-emission scanning electron microscopy showed a narrow size distribution, small size (40–50 nm) and spherical shape of the particles. Energy dispersive spectroscopy result indicated that the ratio of Tb3+/Zn2+ was in agreement with that of the feed. Photoluminescence measurement indicated that the phosphor emitted strong green light centered at 545 nm under UV light excitation. The excitation spectra confirmed the energy transfer from the host material to the Tb3+ ions. This is in favor of the effective green emission of Zn2SiO4:Tb nanoparticles.  相似文献   

15.
许静  谢凯  龙永福  肖加余 《材料导报》2005,19(11):115-117
报道了一种新的调节二氧化硅光子晶体带隙的方法;通过化学镀向SiO2胶体晶体中填充半导体材料Se,获得了Se-SiO2两种介质复合的三维光子晶体;采用扫描电子显微镜(SEM)、X射线衍射和紫外-可见光谱仪(UV-VIS)等对Se-SiO2三维光子晶体的形貌、结构和光学性能进行了观察测试.研究结果表明,Se以纳米晶粒的形式均匀地包覆在SiO2微球表面,形成了Se壳层,与相同晶格周期的SiO2光子晶体相比,Se-SiO2光子晶体的带隙发生了明显的红移.  相似文献   

16.
We have studied the band structure and group velocity of electromagnetic waves in an opal photonic crystal filled with Al2O3:Cr3+. The results demonstrate that, when a resonance state of the chromium ion falls within the band gap of an unfilled photonic crystal, the group velocity of electromagnetic waves decreases anomalously. We have calculated the dispersion curves and frequency dependences of the group velocity of electromagnetic waves in an opal photonic crystal filled with Al2O3:Cr3+.  相似文献   

17.
《Materials Letters》2007,61(14-15):2879-2882
Silica nanoparticles, prepared by the Stober method, have been doped with Eu3+, Dy3+, or processed to result in Au nanoparticles on the silica surface. The luminescence of the rare earth (RE)-doped SiO2 particles has been studied as a function of the nature of the RE, their concentration and also of the presence of Au nanoparticles at the surface of the SiO2 nanoparticles. We have shown that the Eu3+ emission is observable over the experimental conditions examined, whereas it was not possible to observe any emission for Dy3+ doped materials. No enhancement of the Eu3+ emission was observed following the adsorption of gold nanoparticles at the surface of the SiO2 nanoparticle, however an excitation at 250 nm leads to both the emission of the matrix and Eu3+ showing an energy transfer from the SiO2 matrix to Eu3+ ions.  相似文献   

18.
三维光子晶体具有长程有序的结构特点, 在可见和近红外光谱范围内有着广泛的应用。光子晶体的一个重要性质是其对嵌入其中的发光中心自发辐射具有调制作用。本研究利用自组装和模板辅助法制备高质量的三维NaGd(WO4)2:Yb3+/Tm3+反蛋白石光子晶体, 探究了光子带隙对Tm3+离子上转换荧光发射与发光动力学的调制作用。通过对比分析发现, 由于反蛋白石光子晶体独特的周期性大孔结构和光子带隙效应, 处于光子带隙内的Tm3+离子1G4-3H6的发光强度被抑制约45%, 自发辐射速率(SDR)被抑制约30%, 同时上转换局域热效应得到有效的调制。本实验结果对探索新型高效稀土掺杂上转换发光材料和提高上转换发光效率有指导意义。  相似文献   

19.
通过纳米小球自组装的方法制备获得了三维有序结构的聚苯乙烯(PS)蛋白石光子晶体.利用扫描电子显微镜(SEM)对蛋白石光子晶体的微观形貌进行表征,并利用透射光谱对蛋白石进行光学表征.结果表明,胶体自组装能够形成点缺陷、等边三角线缺陷和等边立方体缺陷,通过对最低能量和机理的探讨,得出导致这些缺陷形成的原因是折射率差异和光子带隙(PBG)位置的蓝移.  相似文献   

20.
Repeatedly filling the octahedral and tetrahedral pores in the quasicrystalline structure of three-dimensional opal matrices with europium-doped silica sols, we obtained two types of nanocomposites, depending on heat treatment conditions: opal photonic crystals filled with mesoporous glass and optically transparent, ordered quantum-dot photonic crystals. According to elemental analysis data, the nanocomposites were identical in europium concentration: within 10–30 ppm. The luminescence spectra of the nanocomposites were analyzed, and their photoluminescence was shown to depend on the morphological and microstructural characteristics of the quasicrystalline materials and the spectral position of the band gap of the ordered photonic crystals. The Eu3+ photoluminescence intensity increases considerably when the spectral position of the 5 D 07 F 2 transition approaches the band gap edge of the transparent photonic crystal. We present analysis of the feasibility of using europium-doped opaline and transparent photonic crystals as gain media for lasing in the red spectral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号