首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Pulsed laser ablation of a graphite target was carried out by ArF excimer laser deposition at a laser wavelength of 193 nm and fluences of 10 and 20 J/cm2 to produce diamond-like carbon (DLC) films. DLC films were deposited on silicon and quartz substrates under 1 × 10? 6 Torr pressure at different temperatures from room temperature to 250 °C. The effect of temperature on the electrical and optical properties of the DLC films was studied. Laser Raman Spectroscopy (LRS) showed that the DLC band showed a slight increase to higher frequency with increasing film deposition temperature. Spectroscopic ellipsometry (SE) and ultraviolet–visible absorption spectroscopy showed that the optical band gap of the DLC films was 0.8–2 eV and decreased with increasing substrate temperature. These results were consistent with the electrical resistivity results, which gave values for the films in the range 1.0 × 104–2.8 × 105 Ω cm and which also decreased with deposition temperature. We conclude that at higher substrate deposition temperatures, DLC films show increasing graphitic characteristics yielding lower electrical resistivity and a smaller optical band gap.  相似文献   

2.
In this work, we fabricated reduced large-area graphene oxide (rLGO) with maximum surface area of 1592 μm2 through a cost-effective chemical reduction process at low temperature. The product revealed large electrical conductivity of 243 ± 12 S cm−1 and thermal conductivity of 1390 ± 65 W m−1 K−1, values much superior to those of a conventional reduced small-area graphene oxide (with electrical conductivity of 152 ± 7.5 S cm−1 and thermal conductivity of 900 ± 45 W m−1 K−1). The rLGO thin film also exhibited not only excellent stiffness and flexibility with Young’s modulus of 6.3 GPa and tensile strength of 77.7 MPa, but also an efficient electromagnetic interference (EMI) shielding effectiveness of ∼20 dB at 1 GHz. The excellent performance of rLGO is attributed to the fact that the larger area LGO sheets include much fewer defects that are mostly caused by the damage of graphene sp2 structure around edge boundaries, resulting in large electrical conductivity. The manufacturing process of rLGO is an economical and facile approach for the large scale production of highly thermally conducting graphene thin films with efficient EMI shielding properties, greatly desirable for future portable electronic devices.  相似文献   

3.
Syntheses of multifunctional structures, both in two-dimensional and three-dimensional space, are essential for advanced graphene applications. A variety of graphene-based materials has been reported in recent years, but combining their excellent mechanical and electrical properties in a bulk form has not been entirely achieved. Here, we report the creation of novel graphene structures such as graphene pellet and graphene paper. Graphene pellet is synthesized by chemical vapor deposition (CVD), using inexpensive nickel powder as a catalyst. Graphene pellet can be further processed into a graphene paper by pressing. The latter possesses high electrical conductivity of up to 1136 ± 32 S cm−1 and exhibits a breaking stress at 22 ± 1.4 MPa. Further, this paper-like material with thickness of 50 μm revealed 60 dB electromagnetic interference (EMI) shielding effectiveness.  相似文献   

4.
For extending graphene aerogels for broad applications, here we demonstrate a simple and universal approach for scalable fabricating novel dual carbon three-dimensional (3D) hybrid structures, where the interspace of a 3D carbon texture has been modified by in situ generating graphene aerogels. Owing to the unique exceptional 3D carbon bi-frameworks of enhanced electrical conductivity and flexibility, the as-prepared graphene aerogel–carbon texture hybrid presents an ultra-light feature (0.07 g cm−3 in density), with highly effective electromagnetic interference (EMI) shielding performance up to 27 dB and 37 dB (in the X band region) at thicknesses of 2 and 3 mm, respectively. According to the mechanisms in EMI shielding, the fundamental criteria for evaluating a shielding material has been discussed and the excellent shielding performance coupled with the ultra-low density allows such 3D all-carbon hybrids to show more advantageous than the other carbon-based shielding composites. Implication of the results suggests that the strategy of various advantages could be widely extended to a variety of applications, promising a great platform for large-scale fabricating porous graphene-based materials into high-performance products.  相似文献   

5.
Peng Su  Hui-Lin Guo  Lei Tian  Sheng-Ke Ning 《Carbon》2012,50(15):5351-5358
A highly stable graphene suspension has been prepared using dimethyl ketoxime (DMKO) as reductant. Nitrogen was doped into the graphene plane at the same time as the graphene oxide (GO) sheets were reduced. X-ray photoelectron spectroscopy indicated that the C/O ratio of graphene was significantly increased after GO was treated with DMKO and the quantity of nitrogen incorporated into the graphene lattice was 3.67 at.%. The electrical conductivity of the graphene paper was found to be ~102 S m?1, which was 5 orders of magnitude better than that of GO, and this demonstrated the effective chemical reduction of GO. The mechanism of the chemical reaction of GO with DMKO was also discussed. The as-produced graphene material showed good capacitive behavior and long cycle life with a specific capacitance of ~140 F g?1.  相似文献   

6.
A device consisting of a few layers of graphene (FLG) sheets was exposed to atmospheric plasma, resulting in the generation of significant number of defects, oxygen absorption, and doping. The plasma-induced electrical transformation and photoconducting properties of pristine FLG and plasma-irradiated FLG (p-FLG) were compared under visible and ultraviolet (UV) light illumination. The visible light photoresponsivity of p-FLG was 0.47 AW−1 at 535 nm, comparatively higher than that observed for pristine FLG (10 m AW−1); this result was attributed to the formation of defect midgap states band by plasma irradiation. Photoinduced molecular desorption causes the responsivity of the higher energy (UV) photons. Our results suggest that plasma irradiation is a simple, novel way to tailor the optoelectronic properties of graphene layers.  相似文献   

7.
Bilayer graphene has been synthesized by using hydrogen plasma treatment of copper foils for 30 s at the temperature of 850 °C together with joule-heating treatment of the foils without using a carbon-containing gas such as methane in order to suppress the nucleation density of graphene. The effect of plasma provides active species of carbon atoms on copper substrate and a selective bilayer graphene formation of AB-stacking in a very short time. Carbon to be precipitated is delivered from the copper foil and/or the environment in the reaction chamber. The domain size of synthesized graphene, the controllability of a few layers and the electrical conductivity have been significantly improved compared with plasma chemical vapor deposition (CVD) using carbon-containing gas. The sheet resistance of bilayer graphene exhibits 951 Ω in average. The carrier mobility shows 1000 cm2/V s in maximum at room temperature. The sheet resistance of 130 ± 26 Ω has been attained after the doping by gold chloride solution.  相似文献   

8.
We report sodium dodecyl sulfate (SDS) stabilization of graphene nanosheets, with two different sizes as auxiliary fillers inside the conventional electrically conductive adhesive (ECA) composite. Using this non-covalent modification approach we were able to preserve the single-layer structure of graphene layers and prevent their re-stacking inside the composite, which resulted in a significant electrical conductivity improvement of ECAs at noticeably low filler content. Addition of 1.5 wt% small and large SDS-modified graphene into the conventional ECAs with 10 wt% silver flakes led to low electrical resistivity values of 5.5 × 103 Ω cm and 35 Ω cm, respectively, while at least 40 wt% of silver flakes was required for the conventional ECA to be electrically conductive. A highly conductive ECA with very low bulk resistivity of 1.6 × 10−5 Ω cm was prepared by adding 1.5 wt% of SDS-modified large graphene into the conventional ECA with 80 wt% silver flakes which is less than that of eutectic lead-based solders.  相似文献   

9.
In this work, inkjet printing methods are used to create graphene field effect transistors with mobilities up to 3000 cm2 V−1 s−1. A commercially-available chromium-based ink is used to define the device channel by inhibiting chemical vapour deposition of graphene in defined regions on a copper catalyst. We report on the patterned graphene growth using optical and electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Silver nanoparticle ink is used to create electrical contacts to the defined graphene regions. The resulting devices were characterised by electrical transport measurements at room temperature. As a result we are able to fabricate high-performance graphene field effect transistors entirely defined by a commercial inkjet printer with channel lengths of 50 μm.  相似文献   

10.
We report a simple and effective route to convert graphene oxide sheets to good quality graphene sheets using hot pressing. The reduced graphene oxide sheets obtained from graphene oxide by low temperature thermal exfoliation are annealed at 1500 °C and 40 MPa uniaxial pressures for 5 min in vacuum. No appreciable oxygen content was observed from X-ray photoelectron spectroscopy and no D peak was detected in the Raman spectrum. The graphene sheets produced had a much higher electron mobility (1000 cm2 V−1 S−1) than other chemically modified graphenes.  相似文献   

11.
《Ceramics International》2016,42(11):12914-12921
Multiferroic Bi0.90La0.10Fe0.95Mn0.05O3 (BLFMO) nanoceramics were synthesized by PVA sol-gel method, followed by microwave sintering. The structural, microstructural and electrical properties of BLFMO were investigated. The crystal symmetry and unit cell dimensions were determined from the experimental data using Rietveld analysis. BLFMO revealed only one electroactive region as verified from impedance and modulus spectroscopy. Overlapping large polaron tunneling transport mechanism was observed from AC conductivity analysis. Conduction below 250 °C (−30 °C≤T≤250 °C) was attributed to translational hopping while above 250 °C (250 °C≤T≤350 °C) corresponds to electron hopping between charge defects. The relative permittivity varies from 66 to 203 at 1 kHz over the measured temperature range (−150 °C≤T≤350 °C). The electrical conductivity of the microwave sintered BLFMO has been discussed based on defect reaction with Mn doping. The measured DC conductivity in the range of 10−13 S/cm at −130 °C to 10−4 S/cm at 350 °C revealed the insulating behavior of the sample. At room temperature, the DC resistivity of the sample was over ~50  cm. The stretching constant (β) obtained from KWW (Kohlrausch-Williams-Watts) equation indicates that the sample inclined towards ideal Debye behavior as the temperature increases.  相似文献   

12.
Cu foils of 2 × 2 cm2 have been implanted with 70 keV C ions to nominal fluences of (2–10) × 1015 cm−2 at room temperature (RT) and subsequently annealed at 900–1100 °C for 15 min, before being cooled to RT to form graphene layers on the Cu surfaces. Analyses with Raman spectroscopy and atomic force microscopy demonstrate that a continuous film of bi-layer graphene (BG) is produced for implant fluences as low as 2 × 1015 cm−2, much less than the carbon content of the BG films. This suggests that the implanted carbon facilitates the nucleation and growth of graphene, with additional carbon supplied by the Cu substrate (0.515 ppm carbon content). No graphene was observed on unimplanted Cu foils subjected to the same thermal treatment. This implantation method provides a novel technique for the selective growth of graphene on Cu surfaces.  相似文献   

13.
Polytetrafluoroethylene (PTFE) is one of the most widely used solid lubricants but suffers from a high wear rate which limits its applications. Here we report four orders of magnitude reduction in the steady state wear rate of PTFE due to graphene additives. The wear rate of unfilled PTFE was measured to be ~0.4 × 10?3 mm3/N m which is reduced to ~10?7 mm3/N m by the incorporation of 10 wt% of graphene platelets. We also performed a head-to-head comparison of wear rate with graphene and micro-graphite fillers at the same weight fractions. In general, we find that graphene fillers gave 10–30 times lower wear rates than micro-graphite at the same loading fraction. Scanning electron microscopy analysis indicated noticeably smaller wear debris size in the case of graphene/PTFE composites indicating that graphene additives are highly effective in regulating debris formation in PTFE leading to reduced wear.  相似文献   

14.
The temperature dependence of electrical conductivity of nanocomposites with polystyrene and graphene platelets (GNPs) was studied. It was found that for low loadings of GNPs the conductivity behaviour changed significantly within the temperature range of 295–369 K. Thus, conductivity saw a drop with decrease of temperature from 369 to 331 K. The corresponding curve was approximated by the mechanism of hopping conductivity. Within the temperature range of 331–305 K a slight decrease of conductivity was observed. The latter was well-fitted by exponential curve with coefficients related to fluctuation-induced tunnelling of electrons between neighbour graphene platelets. Within the low-temperature range of 305–295 K a growth of conductivity was explained by increasing of electron tunnelling through the contact caused by the creation of electret state. The latter was presumably formed by polarisation of the polymer between edges of two neighbouring graphene platelets. The observed dependence of conductivity upon temperature is non-linear for low loadings of GNPs and it is close to the linear dependence for higher loadings of the filler.  相似文献   

15.
《Ceramics International》2016,42(11):12644-12650
Hierarchical nickel oxide/graphene oxide (NiO/GO) and nickel oxide/graphene oxide/silver (NiO/GO/Ag) heterostructures were sucessfully fabricated as high-performance supercapacitors electrode materials by using a hydrothermal process and a photoreduction process. The experimental results showed that the NiO/GO/Ag heterostructure electrodes showed better electrochemical performance than those of NiO/GO and bare NiO nanosheets. The NiO/GO/Ag electrode exhibited a higher specific capacitance of 229 F g−1 at a current density of 1 A g−1, higher than that of 161 F g−1 for NiO/GO composites. Furthermore, NiO/GO/Ag electrode also showed good rate capability (still 200 F g−1 at 6 A g−1) and cycling stability (24% loss after 2000 repetitive cycles at a scan rate of 20 mV s−1). The enhanced capacitive performance of the NiO/GO/Ag composites was mainly attributed to the introduction of Ag nanoparticles, which increased the electrical conductivities of the composites, and promoted the electron transfer between the active components. This study suggested that NiO/GO/Ag composites were a promising class of electrode materials for high performance energy storage applications.  相似文献   

16.
Reduction of graphite oxide (GO) to graphene induced by picosecond pulsed laser irradiation has been studied by Raman spectroscopy, scanning electron microscopy together with modeling of temperature dynamics in the materials. Dependence of the D, G, and 2D Raman band parameters on the laser pulse energy and the irradiation dose was evaluated. The exponential decline of the full width at half maximum of the Raman lines with increasing product of the pulse energy and irradiation dose was observed indicating ordering in the film and reduction in the number of graphene layers during the laser treatment. The minimum concentration of structural defects and the largest relative intensity of the 2D peak were found for the 50 mW mean laser power and the 30 mm/s scanning speed. Modeling of temperature dynamics revealed that the temperature of the GO film irradiated with a single laser pulse at a fluence of 0.04 J/cm2 (50 mW) increased up to 1400 °C for a few nanoseconds, which was sufficient for the effective reduction of GO to graphene with successive laser pulses.  相似文献   

17.
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a more active host, with large interlayer distances and a disordered structure, enabling it to store a higher amount of Na ions. RGO anode exhibits high capacity combined with long-term cycling stability at high current densities, leading to reversible capacity as high as 174.3 mAh g−1 at 0.2 C (40 mA g−1), and even 93.3 mAh g−1 at 1 C (200 mA g−1) after 250 cycles. Furthermore, RGO could yield a high capacity of 141 mAh g−1 at 0.2 C (40 mA g−1) over 1000 cycles.  相似文献   

18.
We have performed high-resolution angle-resolved photoemission spectroscopy of oxygen-adsorbed monolayer graphene grown on 6H–SiC(0 0 0 1). We found that the energy gap between the π and π1 bands gradually increases with oxygen adsorption to as high as 0.45 eV at the 2000 L oxygen exposure. A systematic shrinkage of the π1 electron Fermi surface was also observed. The present result strongly suggests that the oxidization is a useful technique to create and control the band gap in monolayer graphene.  相似文献   

19.
Well-dispersed graphene supported Ru@Co core–shell nanoparticles were synthesized by one-step in situ co-reduction of aqueous solution of ruthenium(III) chloride hydrate, cobalt(II) chloride hexahydrate and graphite oxide (GO) with ammonia borane under ambient condition. The as-synthesized nanoparticles exert excellent catalytic activities, with the turnover frequency (TOF) value of 344 mol H2 min 1 (mol Ru) 1 for catalytic hydrolysis of ammonia borane, which is the second highest value ever reported. The as-synthesized catalysts exert superior catalytic activities than the monometallic (Ru/graphene), alloy (RuCo/graphene), and graphene-free Ru@Co counterparts towards the hydrolytic dehydrogenation of AB. Moreover, the catalytic hydrolysis of MeAB at room temperature was also studied. These Ru@Co NPs are a promising catalyst for amine-borane hydrolysis and for developing a highly efficient hydrogen storage system for fuel cell applications.  相似文献   

20.
A novel approach utilizing current-assisted CO2 laser irradiation was used to join two monolayer graphene flakes. Two partially overlapped graphene flakes were irradiated with a continuous wave CO2 laser, together with a current at a constant voltage of 30 V. Raman spectrometer and transmission electron microscope (TEM) analyses showed the joining signal at a laser power density of 8 W/cm2 with an irradiation time of 30 s and a current of 25 mA (30 V) for 5 min. The joining mechanism of graphene flakes was also investigated. We provide a novel route to realize large-area graphene joint for potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号