首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
21世纪非制造业自动化的发展与特种机器人研究思考   总被引:1,自引:0,他引:1  
戴先中 《自动化学报》2002,28(Z1):96-102
21世纪初将是非制造业自动化(包括农业自动化、服务自动化和地下、水下、地面(建设)作业自动化等)的快速发展时期.文中从分析工业机器人技术的进步对制造业自动化发展的影响着手,指出非制造业自动化的快速发展,将对特种机器人产生巨大的需求;特种机器人作为一种具有高度灵活性的自动化并逐渐智能化的机器,无疑具有很大的发展空间;同时特种机器人技术的发展,将极大地推动非制造业自动化的发展,特种机器人技术将成为非制造业自动化中的核心技术之一.该文还建议,我国特种机器人研究应放在非制造业自动化发展的大环境中开展,同时应重视多学科交叉,研究队伍不能局限于自动化领域.  相似文献   

2.
In a general definition of robot components given by Wolfram Stadler, communications and power supply are included showing the close relation between robots and walking machines. Both of them are based on mechatronics allowing variable programmable operations.Biped walking represents a complex motion of sophisticated systems in nature as well as in engineering. A young human requires more than 1 year to learn walking while old humans need additional devices for save walking. While passive machines walk only on inclined planes, active machines may walk in all kinds of terrains. However, the active devices known from literature consume so much energy that their operation time is very restricted.In this paper the modeling of walking systems using the method of multibody dynamics is presented including the contact and impact problem inherent to biped walking. The limit cycle of passive motions is investigated as well as the related stability using shooting approaches with optimization techniques. The active machines proposed are controlled using the principles of inverse dynamics and advanced linear control strategies. In particular, the energy consumption between passive and active walking machines is compared by a coefficient of efficiency. At the time being human walking is still the most efficient and it is considered as a benchmark for the mechatronic design of walking machines.  相似文献   

3.
Up to the present time, the control software design of production systems has been developed to produce a certain number of goods, in a centralised manner and through a case-by-case, timely and costly process. Therefore, the current control design approaches hinder factories in their pursuit to acquire the essential capabilities needed in order to survive in this customer-driven and highly competitive market. Some of these vital production competencies include mass customisation, fault tolerance reconfigurability, handling complexity, scalability and agility. The intention of this research is to propose a uniform architecture for control software design of collaborative manufacturing systems. It introduces software components named as modular, intelligent, and real-time agents (MIRAs) that represent both intelligent products as clients (C-MIRA) and machines or robots as operators (O-MIRAs) in a production system. C-MIRAs are in constant interaction with customers and operators through human machine interfaces, and are responsible for transforming products from concepts up to full realisation of them with the least possible human intervention. This architecture is built upon the IEC 61499 standard which is recognised for facilitating the distributed control design of automation systems; however, it also takes into account the intelligent product concept and envisages the machines’ control to be composed of a set of modular software components with standardised interfaces. This approach makes the software components intuitive and easy to install, to create the desired behaviour for collaborative manufacturing systems and ultimately paves the way towards mass customisation. A simplified food production case study, whose control is synthesised using the proposed approach, is chosen as an illustrative example for the proposed methodology.  相似文献   

4.
In recent years carbon fibre reinforced plastics (CFRP) have gained enormous popularity in aircraft applications. Since the material is very expensive, costs have to be saved through an automated production. For the manufacturing of large structures it is often advisable to use cooperating robots. However, a major problem for the economic use of complex components is the programming of the robot paths. Manual teach-in is no feasible solution and therefore often decides if automated production is profitable. In this work, a system is presented which automatically calculates robot paths using evolutionary algorithms. The use of the proposed system allows, to reduce the commissioning time drastically and changes to the process can be made without great effort by changing the component data.  相似文献   

5.
Cable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes fewer manufacturing steps and is therefore likely to be better suited for automated production. Automation of the cable winding production step is a crucial task in order to lower the manufacturing costs of these machines. This article presents a production method using industrial robots for automation of cable winding of electric machine stators. The concept presented is validated through computer simulations and full-scale winding experiments, including a constructed robot-held cable feeder tool prototype. A cable wound linear stator section of an Uppsala University Wave Energy Converter and its winding process is used as a reference in this article. From this example, it is shown that considerable production cycle time and manufacturing cost savings can be anticipated compared to manual winding. The suggested automation method is very flexible. It can be used for the production of cable wound stators with different shapes and sizes, for different cable dimensions and with different winding patterns.  相似文献   

6.
A manufacturing system able to perform a high variety of tasks requires different types of resources. Fully automated systems using robots possess high speed, accuracy, tirelessness, and force, but they are expensive. On the other hand, human workers are intelligent, creative, flexible, and able to work with different tools in different situations. A combination of these resources forms a human-machine/robot (hybrid) system, where humans and robots perform a variety of tasks (manual, automated, and hybrid tasks) in a shared workspace. Contrarily to the existing surveys, this study is dedicated to operations management problems (focusing on the applications and features) for human and machine/robot collaborative systems in manufacturing. This research is divided into two types of interactions between human and automated components in manufacturing and assembly systems: dual resource constrained (DRC) and human-robot collaboration (HRC) optimization problems. Moreover, different characteristics of the workforce and machines/robots such as heterogeneity, homogeneity, ergonomics, and flexibility are introduced. Finally, this paper identifies the optimization challenges and problems for hybrid systems. The existing literature on HRC focuses mainly on the robotic point of view and not on the operations management and optimization aspects. Therefore, the future research directions include the design of models and methods to optimize HRC systems in terms of ergonomics, safety, and throughput. In addition, studying flexibility and reconfigurability in hybrid systems is one of the main research avenues for future research.  相似文献   

7.
A set of modular components is presented for use in reconfigurable robotic construction systems. The set includes passive and active components. The passive components can be formed into static structures and adaptable grids carrying electrical power and signals. Passive and active components can be combined into general purpose mobile manipulators which are able to augment and reconfigure the grid, construct new manipulators, and potentially perform general purpose fabrication tasks such as additive manufacturing. The components themselves are designed for low-cost, simple fabrication methods and could potentially be fabricated by constructors made of the same components. This work represents a step toward a Cyclic Fabrication System, a network of materials, tools, and manufacturing processes that can produce all of its constituent components. These and similar systems have been proposed for a wide range of far-term applications, including space-based manufacturing, construction of large-scale industrial facilities, and also for driving development of low-cost 3D printing machines.  相似文献   

8.
Modular manufacturing   总被引:1,自引:0,他引:1  
This paper discusses requirements to be satisfied by future manufacturing systems and proposes a new concept of modular manufacturing to integrate intelligent and complex machines. In large-scale systems such as manufacturing systems, modularization is indispensable for clarifying logical structure and assuring a high degree of ease of construction. The parts, products and manufacturing equipments as well as the design and operating activities themselves are all described in units called modules. A manufacturing system is constructed and operated by combining these in building-block style. The creation of this manufacturing system relies on construction and operating systems that enable design and simulation in the virtual world, and production and control in the real world, in a unified approach. Hardware modules and software modules are compiled flexibly and hierarchically to fulfil specified tasks. A system in which modular manufacturing as a concept of system integration is applied to manufacturing robots is called a modular robot system. The robots are embedded in manufacturing systems as the highest application of model-based robotics.  相似文献   

9.
制造系统控制结构现状和发展——从集中结构到动态结构   总被引:6,自引:0,他引:6  
王成恩 《控制与决策》1999,14(6):625-630
系统的决策控制系统依赖于系统内部的控制结构,制造系统的控制结构是先进制造与自动化领域的重要研究课题。制造系统的控制结构与计算机技术、生产设备自动化水平及制造模式等因素有关。早期的制造系统采用集中控制结构,而柔性制造系统和计算机集成制造系统多采用递阶控制结构。目前制造业已进入一个新时代,传统生产模式和企业结构无法适应不可预测的激烈的环境变化。因此,未来制造系统需要具备快速变化能力的动态控制结构。  相似文献   

10.
Industrial robots play an important role in automation technology. A further increase of productivity is desired, especially in the field of handling and assembly, the domain of industrial robots. Parallel robots demonstrated their potential in applications with needs for high-dynamic trajectories in the recent years. Within the scope of the Collaborative Research Center (SFB 562)????Robotic Systems for Handling and Assembly?? the German Aerospace Center (DLR) and the Technical University of Braunschweig investigate smart-structures technology for parallel robots. In this paper the results of the main topics new active components, Finite-Element based elastic position dependent modeling and vibration control are summarized. The latest parallel robot called is equipped with new active rods. The design as well as the dimensioning of the rod with surface mounted piezo patch actuators is described. For trajectory based robot control, rigid body models are required. In parallel robots with vibration reduction a coupled approach is necessary in which elastic and rigid body equations are combined. The derivation of the equations for parallel robot is presented. Finally, the implemented vibration control is explained. In a position-dependent approach several robust controllers are switched to gain optimal control performance. A stability proof for the switching process is derived.  相似文献   

11.
Manufacturing processes and industrial systems gradually change their traditional layouts and configurations, preparing to introduce novel integrated human-robot technologies as collaborative robots and exoskeletons. Whether mass customization of lot size and the production mix discourages the adoption of capital-intensive automation, collaborative robots become affordable and effective and a hotspot of the debate on manufacturing systems. This paper provides a novel support-design framework for the cooperative robot system in labor-intensive manufacturing processes to aid layout and task scheduling design. Through an iterative closed-loop methodology, this framework explores the impact of a cooperative robot in a labour-intensive manufacturing system like the production facility of a food service company. The framework leads the designer through the re-layout of the end-of-line, the economic and technical feasibility analyses, using simulation to estimate payback and ergonomics benefits for workers. Within the proposed layout, we state that adopting a cooperative cobot for the end-of-line is affordable and ergonomically convenient without representing a safety threat for workers. The testbed confirms the framework as an enabling tool for human-robot technologies integration in current manufacturing systems under budget and workers-driven constraints.  相似文献   

12.
Machine-to-machine (M2M) communication is a crucial technology for collaborative manufacturing automation in the Industrial Internet of Things (IIoT)-empowered industrial networks. The new decentralized manufacturing automation paradigm features ubiquitous communication and interoperable interactions between machines. However, peer-to-peer (P2P) interoperable communications at the semantic level between industrial machines is a challenge. To address this challenge, we introduce a concept of Semantic-aware Cyber-Physical Systems (SCPSs) based on which manufacturing devices can establish semantic M2M communications. In this work, we propose a generic system architecture of SCPS and its enabling technologies. Our proposed system architecture adds a semantic layer and a communication layer to the conventional cyber-physical system (CPS) in order to maximize compatibility with the diverse CPS implementation architecture. With Semantic Web technologies as the backbone of the semantic layer, SCPSs can exchange semantic messages with maximum interoperability following the same understanding of the manufacturing context. A pilot implementation of the presented work is illustrated with a proof-of-concept case study between two semantic-aware cyber-physical machine tools. The semantic communication provided by the SCPS architecture makes ubiquitous M2M communication in a network of manufacturing devices environment possible, laying the foundation for collaborative manufacturing automation for achieving smart manufacturing. Another case study focusing on decentralized production control between machines in a workshop also proved the merits of semantic-aware M2M communication technologies.  相似文献   

13.
This paper proposes a mixed validation approach based on coloured Petri nets and 3D graphic simulation for the design of supervisory systems in manufacturing cells with multiple robots. The coloured Petri net is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. The graphical simulation is used to analyse and validate the cell behaviour in a 3D environment, allowing the detection of collisions and the calculation of process times. The motivation for this work comes from the aeronautic industry. The automation of a fuselage assembly process requires the integration of robots with other cell components such as metrological or vision systems. In this cell, the robot trajectories are defined by the supervisory system and results from the coordination of the cell components. The paper presents the application of the approach for an aircraft assembly cell under integration in Brazil. This case study shows the feasibility of the approach and supports the discussion of its main advantages and limits.  相似文献   

14.
Production technology faces the challenging task of simultaneously increasing the productivity and the flexibility of production facilities in order for manufacturing companies to remain competitive. To take full advantage of new technology and extensive automation, one should also consider societal issues. For an optimum design of production systems in line with real market conditions, one should recognize the conflict in objectives and find appropriate compromises.A classical conflict exists in the difference between the lowest possible capital bound to production facilities and the highest possible delivery readiness. A maximization of the capacity utilization and a minimization of the throughput time can be achieved only by increasing flexibility. In this paper an attempt is made to describe the objectives of productivity and flexibility as well as their optimization.A partial automation of existing manufacturing systems does not necessarily lead to an automated third shift, but could serve a better utilization of the invested capital in the first shift. A further increase in the machine utilization time and in the productivity of the related capital does not inevitably mean an increased number of parts produced per unit time. A 60% reduction of the cutting conditions during the night shift helps to increase the availability of machines. Very often, one can achieve the optimization of the inventory by using an appropriate computer control system.An increase in the materials productivity is possible through the right choice of material and processes and by using recycling methods. The information productivity can increase by using powerful computerized systems, which provide the right information at the right time. The introduction of highly automated production facilities for a large number of pieces and flexible production facilities for a small number of pieces makes possible an increased production flexibility.Another conflict of objectives is caused by the standardization or individualization of products, materials and production methods. Planning methods and application examples are presented. The conflict between work division and work condensation is described and suggestions for a meaningful organization are made. Further, the planning of planning becomes increasingly important.  相似文献   

15.
复杂机电系统设计自动化是知识自动化的一个重要分支, 在机器人系统设计、高档数控机床设计、智能装备系统设计等方面具有重要的研究意义和应用价值. 本文对进化计算在复杂机电系统设计自动化中的应用进行了综述. 首先, 介绍了几种常用进化计算方法及其优点; 其次, 对进化计算在电子系统、微机电系统和复杂机电系统三个领域的设计自动化进行了较为系统且全面的总结. 然后, 以一类典型的复杂机电系统—机器人系统的设计自动化为代表, 对进化计算在机器人系统设计自动化的研究发展进行了讨论. 最后, 针对进化计算在复杂机电系统设计自动化中存在的共性关键问题进行了讨论与展望.  相似文献   

16.
We previously proposed a general algorithm for coordinating the motions among multiple machines in a shared assembly environment based on a constant-speed motion model. In this paper, we extend this work to a minimum-jerk polynomial motion model and describe a new speed-planning algorithm to plan automated assembly machines' motions. Machines are planned sequentially, based on their priorities, by mapping the motions of higher-priority machines into forbidden regions in two-dimensional space-time graphs. Collision-free minimum-jerk motions are then planned between the forbidden regions in the graphs. The new speed-planning algorithm is evaluated on a dual-robot surface-mount technology assembly machine in which both robots share a common workspace. Note to Practitioners—Automated assembly processes, especially surface-mount technology manufacturing, require a high degree of precision when placing certain components. This motivated us to find a way of maintaining good positional accuracy by planning smooth motions for the machines that perform these tasks. Since many of these machines have two or more robots, their motions must also be coordinated. We developed an algorithm that combines coordinated motion concepts with a minimum-jerk motion model that can solve these problems. The algorithm plans segmented paths for the robots and then sequentially plans their speeds to prevent collisions between them. The planned speeds ensure position, velocity, and acceleration continuity between path segments. The smooth motions resulting from this method enable high-accuracy component placement. The tradeoff for this improvement is increased cycle time compared to other speed-planning methods.  相似文献   

17.
Achieving high quality production of light-emitting diode (LED) wafers requires robust monitoring and the use of a stable test machine. In many factories, production continues 24 h a day. Stopping the manufacturing process at a factory is often difficult. Therefore, reducing inspection time and ensuring the stability of test machines are important. Traditionally, LED wafer factories examine their test machines during periodic maintenance. Standard lamp adjustments are performed to ensure their accuracy. This process interrupts the manufacturing process and requires extra manpower. It reduces productivity and increases production cost. Additionally, the accurate assessment of the aging of the components of the machine requires an experienced engineer. Correctly timing the maintenance and replacing the aging components of the LED wafer test machine are important. This work performed feature extraction to identify the working attributes of an LED wafer test machine. The intelligent maintenance prediction system then uses the radial basis function neural network and variability of the working attributes to predict the maintenance times and aging of the LED wafer test machines. Experimental results reveal that the accuracy of proposed system in predicting maintenance times exceeds 98 %.  相似文献   

18.
The research work presented in this paper focuses on the development of a 3D object localization and recognition system to be used in robotics conveyor coating lines. These requirements were specified together with enterprises with small production series seeking a full robotic automation of their production line that is characterized by a wide range of products in simultaneous manufacturing. Their production process (for example heat or coating/painting treatments) limits the use of conventional identification systems attached to the object in hand. Furthermore, the mechanical structure of the conveyor introduces geometric inaccuracy in the object positioning. With the correct classification and localization of the object, the robot will be able to autonomously select the right program to execute and to perform coordinate system corrections. A cascade system performed with Support Vector Machine and the Perfect Match (point cloud geometric template matching) algorithms was developed for this purpose achieving 99.5% of accuracy. The entire recognition and pose estimation procedure is performed in a maximum time range of 3 s with standard off the shelf hardware. It is expected that this work contributes to the integration of industrial robots in highly dynamic and specialized production lines.  相似文献   

19.
《Robotics》1987,3(3-4):421-426
The use of computer controlled manufacturing systems incorporating robots and flexible control is of paramount interest today. A number of economists have noted that strength in high technology industries such as aircraft, missiles, communications, electronic and computers, in contrast to older industries, gives the economy of any country strong long-term growth prospects.During the past two decades, the concept of a flexible, programmable automation device, which has come to be known as an “industrial robot”, has become a reality. A variety of these automation modules have been developed, offering a wide range of capabilities and application possibilities. Robots currently help weld, cast, form, assemble, machine, transfer, inspect, load and unload parts into and out of a number of differing machines and processes.The first part of this paper analyzes the significance of FMS in industries today. The second part of the paper attempts to evaluate some of the areas of savings as a result of using robots.  相似文献   

20.
AI methods are introduced to an increasing extent in the field of CIM and robotics. This development results in intelligent CIM components – ICAD, ICAP, ICAM, ICAQ – and in intelligent manufacturing systems (IMS) as well as in intelligent robots. This new philosophy requires a lot of prerequisites and research. ICIM or IMS is partially introduced in industry but mainly for large companies. AI as knowledge based and expert systems is ready to be introduced in an efficient way in CIM components. Intelligent, mobile robots as integrated parts of CIM and IMS are ready to be used in factory automation. One of the next steps could be the introduction of Multi-Agent and/or holonic systems. In this contribution the history and the present state of flexible manufacturing, with special emphasis on robotics, are described and further trends in development – Multi Agent Systems – are discussed mainly from the viewpoint of SMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号