首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Optical Materials》2010,32(12):1787-1790
Up-converting yttrium oxysulfide nanomaterials doped with ytterbium and erbium (Y2O2S:Yb3+,Er3+) were prepared with the flux method. The precursor oxide materials were prepared using the combustion synthesis. The morphology of the oxysulfides was characterized with transmission electron microscopy (TEM). The particle size distribution was 10–110 nm, depending on the heating temperature. According to the X-ray powder diffraction (XPD), the crystal structure was found hexagonal and the particle sizes estimated with the Scherrer equation agreeded with the TEM images. Upon the 970 nm infrared (IR) laser excitation, the materials yield moderate green ((2H11/2, 4S3/2)  4I15/2 transition) and strong red (4F9/2  4I15/2) luminescence. The green luminescence was enhanced with respect to the red one by an increase in both the crystallite size and erbium concentration due to the cross-relaxation (CR) processes. The most intense up-conversion luminescence was achieved with xYb and xEr equal to 0.10 and 0.005, respectively. Above these concentrations, concentration quenching occurred.  相似文献   

2.
Transparent oxyfluoride borosilicate glass ceramic containing cubic NaYF4 nanocrystals were successfully fabricated. The cubic NaYF4 nanocrystals with average size of 30 nm were precipitated in the glass matrix, which was confirmed by the X-ray diffraction and TEM results. In comparison with the as-made glass, significant enhancement of upconversion luminescence is observed in the Er3+/Yb3+ codoped transparent glass ceramic, which may be due to the variation of coordination environment of Er3+ and Yb3+ ions after crystallization. The high transparency, intense upconversion luminescence and the simple, low-cost fabrication process make this material exhibiting potential applications in the fields of amorphous silicon solar cells.  相似文献   

3.
The present work is devoted to the characterization of the thermal and spectroscopic properties of tellurite glasses, codoped with Er3+, Yb3+ and Tm3+ rare-earth ions and silver nanoparticles (NPs). The techniques used for this investigation were UV–visible and infrared absorption, time-resolved luminescence and thermal lens. Time-resolved luminescence studies indicate efficient Yb3+  Er3+ and Yb3+  Tm3+ energy transfers and intense Er3+ and Tm3+ mid-infrared emissions around 1550 nm and 1860 nm, respectively. The presence NPs is found to increase the thermal diffusivity of the materials and to shorten the mid-infrared emission lifetime of both the Er3+ and Tm3+ ions.  相似文献   

4.
《Materials Letters》2007,61(11-12):2200-2203
Er3+/Tm3+/Yb3+ tridoped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with 4F9/2  4I15/2 and 2H11/2, 4S3/2  4I15/2 transition of Er3+ respectively. While the blue upconversion originates from 1G4  3H6 transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+.  相似文献   

5.
In this paper, NaYF4 nanocrystals and NH4Y3F10 sub-microcrystals were prepared using a polyol method. After being annealed, NH4Y3F10 can convert into YF3, which is a very efficient host matrix for upconversion. The structures of obtained NaYF4, NH4Y3F10 and YF3 samples are pure cubic phase, a mixture of cubic and hexagonal phase and pure orthorhombic phase, respectively. The size of obtained NaYF4 nanocrystals is about 20 nm, and those of NH4Y3F10 and YF3 sub-microcrystals are both about 200 nm. When co-doped with Er3+ and Yb3+, NaYF4 and YF3 samples can emit bright light under 978 nm excitation. Upconversion mechanisms in Yb3+/Er3+ co-doped NaYF4 and YF3 samples were discussed.  相似文献   

6.
BiPO4:Er3+, Yb3+ phosphors were synthesized by the solvothermal process. The phase transformation, morphology, and UC luminescent property were characterized by different analytical techniques. The aging time has obvious influence on the phase, morphology, and luminescence of the samples. With the extension of aging time, the phase of BiPO4:Er3+, Yb3+ phosphors changes from hexagon to monocline. The morphology changes from nanorods through nanorugbies to microoctahedra. Under the excitation at 980 nm, BiPO4:Er3+, Yb3+ phosphors show green and red UC emissions, which originate from the (2H11/2, 4S3/2)  4I15/2 and 4F9/2  4I15/2 transitions of Er3+ ions. The green and red UC emission intensities increase gradually with the increase of pumping power. On the basis of the luminescent properties, one can conclude that the two-photon process is involved in green and red UC emissions.  相似文献   

7.
A series of Yb3+/Er3+ co-doped Ba(MoO4)h(WO4)1−h upconversion nanocrystals (UCNCs) were prepared via hydrothermal method. The effects of different concentration ratios of Yb3+/Er3+ and Mo4O2/WO42 on the upconversion luminescence were investigated, and the optimum doping concentrations of Yb3+ and Er3+ in the Ba(MoO4)0.5(WO4)0.5 host were found to be 3 mol% and 1 mol%, respectively. Structure of Ba(MoO4)0.5(WO4)0.5:0.03Yb3+/0.01Er3+ was identified as the tetragonal in the X-ray diffraction (XRD) results and the particle size observed in the scanning electron microscope (SEM) was about 40 nm. Under excitation of 980 nm semiconductor laser, three emission bands centered at 528, 550 and 660 nm, originating from 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions of Er3+ ion, respectively, were observed for Ba(MoO4)0.5(WO4)0.5:0.03Yb3+/0.01Er3+. The pump power dependence research suggested that these bands arise due to two-photon absorption. The variation of CIE coordinate at different excitation powers was observed.  相似文献   

8.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

9.
In the paper upconversion luminescence properties in Yb3+/Tm3+ co-doped antimony–germanate glass and double-clad optical fiber were studied. The concentration of lanthanides, which has shown the highest upconversion emission intensity at 478 nm (1G4  3H6) and 650 nm (1G4  3F4), is 1Yb2O3/0.1Tm2O3 (mol%) as a result of exciting with a laser diode (976 nm). The lifetime of 2F5/2 (Yb3+) level decreases from 781 μs to 71 μs in the presence of Tm3+ 0.1–0.75 mol% respectively. Luminescence decay curve of glass co-doped with 1Yb2O3/0.75Tm2O3 suggests donor–donor fast migration followed by Tm3+  Yb3+ energy transfer. Glass characterized by highest intensity of upconversion luminescence (1Yb2O3/0.1Tm2O3 mol%) was used as core of double-clad optical fiber made by modified rod-in-tube method. Mechanisms influencing differences in upconversion amplified spontaneous emission of the fabricated optical fiber and bulk glass were discussed. Reabsorption of the amplified spontaneous emission signal along the fibre resulting from Tm3+:3H6  1G4, transition was observed.  相似文献   

10.
《Optical Materials》2013,35(12):1990-1993
The spectroscopic properties of LaAlO3 polycrystals doped with Er3+, Ho3+ and Yb3+ ions have been investigated. Very efficient up-conversion emission occurs upon IR excitation. The strongest luminescence has been observed for a sample doped with Er3+, Ho3+, and Yb3+ ions simultaneously and annealed at 1500 °C. An efficient energy transfer to Yb3+ ions is observed when Er3+ or Ho3+ ions are excited. The energy transfer mechanisms are proposed.  相似文献   

11.
《Optical Materials》2005,27(10):1563-1566
Optical properties of fluorophosphate Er3+–Yb3+ fiber preforms with different concentrations of ErF3 and YbF3 are investigated in the temperature interval 25–300 °C. The temperature-dependent absorption spectra and luminescence at 1535 nm (under the λ = 970 nm excitation) spectra as well as the 4I13/2  4I15/2 luminescence decay times are used to compute the luminescence cross-section σe(λ). Our results show that in the range of the temperature investigated the quenching effect due to the temperature increase weakly affects the luminescence cross-section and decay time, which make these materials promising for fiber-optics applications.  相似文献   

12.
《Materials Research Bulletin》2006,41(8):1496-1502
The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses under 975 nm excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 nm, corresponding to the 2H11/2  4I15/2, 4S3/2  4I15/2 and 4F9/2  4I15/2 transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+ is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead–germanium–bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices.  相似文献   

13.
《Advanced Powder Technology》2014,25(5):1449-1454
Rod-like and flake-like up-converting Y2O3:Yb3+/Ho3+ particles which are composed of nanoparticles with size less than 100 nm, are prepared by a simple hydrothermal processing at 473 K (3 h) followed by additional thermal treatment at 1373 K (3 and 12 h). The effect of precursor pH value on the formation of Y2O3:Yb3+/Ho3+ is followed through X-ray powder diffractometry (XRPD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Structural refinement confirms formation of the cubic bixbyte structure (S.G. Ia-3) with the non-uniform accommodation of dopants at C2 and S6 cationic sites. Under 978 nm laser excitation, strong green (530–570 nm) up-conversion is observed in all samples. The emission shows a decrease in intensity with an increase in external temperature, indicating FIR (fluorescence intensity ratio) based temperature sensing behavior of 0.52% for the 5F4  5I8/5S2  5I8 transitions.  相似文献   

14.
《Optical Materials》2013,35(12):2035-2040
Infrared to visible up-conversion energy transfer processes are demonstrated in two dimensional ordered arrays of fluorescent Er3+:Yb3+:CaNb2O6 micro-rings embedded in LiNbO3 optical substrate. Spatially resolved confocal spectroscopy reveals that Yb3+  Er3+ energy transfer process only takes place at these confined ring spatial regions. Thus, the formation of rare earth based co-doped micro-rings can be used to generate green and red visible fluorescent ring emitters upon infrared diode laser excitation on wide spatial areas. The results allow to envisage diode pumped multi-color integrated photonic devices for high quality shadow-free phosphor displays.  相似文献   

15.
This report details the fundamental spectroscopic properties of a new class of water-free tellurite glasses studied for future applications in mid-infrared light generation. The fundamental excited state decay processes relating to the 4I11/2  4I13/2 transition in singly Er3+-doped Tellurium Zinc Lanthanum glass have been investigated using time-resolved fluorescence spectroscopy. The excited state dynamics was analyzed for Er2O3 concentrations between 0.5 mol% and 4 mol%. Selective laser excitation of the 4I11/2 energy level at 972 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that in a similar way to other Er3+-doped glasses, a strong energy-transfer upconversion by way of a dipole–dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 μm transition. The 4I13/2 and 4I11/2 energy levels emitted luminescence with peaks located at 1532 nm and 2734 nm respectively with luminescence efficiencies of 100% and 8% for the higher (4 mol.%) concentration sample. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ∼57 kW cm−2 for a CW laser pump at 976 nm for [Er2O3] = 2 mol.%.  相似文献   

16.
ABO4 (A = Ca, Sr; B = W, Mo):Er3+/Yb3+/Li+ phosphors tri-doped with different concentrations of Li+ ion ranging from 0 to 22.5 mol% were prepared by using a solid-state reaction method. And their upconversion (UC) luminescence properties were in estimated under a 975 nm laser-diode excitation. The four kinds of phosphors (CaWO4, CaMoO4, SrWO4, and SrMoO4) tri-doped with Er3+, Yb3+ and Li+ ions showed strong green UC emission peaks at 530 nm and 550 nm and weak red UC emission. The intensity of green UC emission of Li+ doped samples was several higher than that of Li+ un-doped samples due to the reduction of lattice constant and the local crystal field distortion around rare-earth ions. The optimum doping concentration of Li+ ions was investigated and the effects of Li+ concentration for UC emission intensity were studied in detail.  相似文献   

17.
In this work, we present the spectroscopic properties of KY3F10 nanocrystals activated with erbium and codoped with ytterbium ions. The most important processes that lead to the erbium upconversion of green and red emissions of Er3+ were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays of 4S3/2 and 4F9/2 excited levels of Er3+ and to determine the upconversion processes and the luminescence efficiencies of erbium in the visible. Analysis of the luminescence kinetics in Yb:Er:KY3F10 shows a rapid upconversion (Up1) for the green emission with a time constant of 0.31 μs after pulsed laser excitation at 972 nm for as synthesized nanocrystals, which is faster than the time constant measured for the bulk crystal (23 μs). In addition, it is observed a second upconversion process (non-resonant) (Up2) responsible for the red emission (Er3+), which competes with Up1 process. However, the luminescence efficiency of the green emission (4S3/2) is observed to be very low (1.6%) for the as synthesized nanocrystal (25 °C). Nevertheless, it increases with the nanopowder heat treatment reaching an efficiency of 99% (T = 550 °C) relative to the bulk crystal. Similar luminescence behavior was observed for the 4F9/2 level (Er3+) that emits red emission. X-ray diffraction analysis of nanopowder by Rietveld method reveled that the mean crystallite size remains unchanged (8.3–12.3 nm) after thermal treatments with T  400 °C, while the 4S3/2 luminescence efficiency strongly increases to 20%. The luminescence dynamics indicates that Er3+ ions distribution plays a determinant role in the luminescence efficiency of green and red emissions of Er3+ besides also the strong influence on the upconversions processes. The observed luminescence effect is caused by the non-uniform Er3+ (and Yb3+) ions distribution due to the nanocrystal grown, which introduces a concentration gradient that increases towards the nanoparticle surface. This concentration effect produces strong (Er × Er) cross-relaxations depleting the excited states populations of 4S3/2 and 4F9/2 levels and their luminescence efficiencies in KY3F10 nanocrystals. The concentration gradient is very accentuated in the as synthesized nanocrystal and gradually decreases with the thermal treatments where the dopant ions can migrate through the lattice towards the nanocrystal’s interior to get a more uniform and random distribution, which is reached after heat treatment to T = 550 °C.  相似文献   

18.
《Optical Materials》2014,36(12):2085-2089
Processes involving visible to infrared energy conversion are presented for Pr3+–Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr3+:3P0  3H4 (482 nm), Pr3+:1D2  3H6 (800 nm), Yb3+:2F5/2  2F7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+–Yb3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+:3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) resulting in one photon emitted by Pr3+ (1G4  3H5) and one photon emitted by Yb3+ (2F7/2  2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0  1G4; Yb3+:2F7/2  2F5/2) followed by a second energy transfer step (Pr3+:1G4  3H4; Yb3+:2F7/2  2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+:1D2  3F4; Yb3+:2F7/2  2F5/2).  相似文献   

19.
《Materials Research Bulletin》2013,48(11):4729-4732
Novel Er3+/Yb3+ co-doped BaTi2O5–Gd2O3 spherical glasses have been fabricated by aerodynamic levitation method. The thermal stability, upconversion luminescence, and magnetic properties of the present glass have been studied. The glasses show high thermal stability with 763.3 °C of the onset temperature of the glass transition. Red and green emissions centered at 671 nm, 548 nm and 535 nm are obtained at 980 nm excitation. The upconversion is based on a two-photon process by energy transfer, excited-state absorption, and energy back transfer. Yb3+ ions are more than Er3+ ions in the glass, resulting in efficient energy back transfer from Er3+ to Yb3+. So the red emission is stronger than the green emissions. Magnetization curves indicate that magnetic rare earth ions are paramagnetic and the distribution is homogeneous and random in the glass matrix. Aerodynamic levitation method is an efficient way to prepare glasses with homogeneous rare earth ions.  相似文献   

20.
Yellow upconversion (UC) luminescence is observed in Ho3+/Yb3+ co-doped CaMoO4 synthesized by complex citrate-gel method. Under 980 nm excitation, Ho3+/Yb3+ co-doped CaMoO4 exhibited yellow emission based on green emission near 543 nm generated by 4F4, 5S2  5I8 transition and strong red emission around 656 nm generated by 5F5  5I8 transition, which are assigned to the intra 4f transitions of Ho3+ ions. The optimum doping concentration of Ho3+ and Yb3+ was investigated for highest upconversion luminescence. Based on pump power dependence, upconversion mechanism of Ho3+/Yb3+ co-doped CaMoO4 was studied in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号