首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diamond-like carbon (DLC) thin films were deposited on silicon and ITO substrates with applying different negative bias voltage by microwave surface wave plasma chemical vapor deposition (MW SWP-CVD) system. The influence of negative bias voltage on optical and structural properties of the DLC film were investigated using X-ray photoelectron spectroscopy, UV/VIS/NIR spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. Optical band gap of the films decreased from 2.4 to 1.7 with increasing negative bias voltage (0 to − 200 V). The absorption peaks of sp3 CH and sp2 CH bonding structure were observed in FT-IR spectra, showing that the sp2/sp3 ration increases with increasing negative bias voltage. The analysis of Raman spectra corresponds that the films were DLC in nature.  相似文献   

2.
Diamond-like carbon (DLC) films have been deposited at atmospheric pressure by microwave-induced microplasma for the first time. Typical precursor gas mixtures are 250 ppm of C2H2 in atmospheric pressure He. Chemically resistant DLC films result if the Si (100) or glass substrate is in close contact with the microplasma, typically at a standoff distance of 0.26 mm. The films deposited under this condition have been characterized by various spectroscopic techniques. The presence of sp3 CH bonds and ‘D’ and ‘G’ bands were observed from FTIR and Raman spectroscopy, respectively. The surface morphology has been derived from SEM and AFM and shows columnar growth with column diameters of approximately 100 nm. Likely due to the low energy of ions striking the surface, the hardness and Young's modulus for the films were found to be 1.5 ± 0.3 GPa and 60 ± 15 GPa respectively with a film thickness of 2 μm. The hypothesis that a high flux of low energy ions can replace energetic ion bombardment is examined by probing the plasma. Rapid deposition rates of 4–7 μm per minute suggest that the method may be scalable to continuous coating systems.  相似文献   

3.
In this paper, AlCrSi atoms were co-doped into DLC coatings by using a high power impulse magnetron sputtering combining with an anode-layer linear ion beam. The doped AlCrSi contents were controlled via adjusting the Ar fraction in the sputtering gas mixture of Ar and C2H2. The influences of the AlCrSi multi-doping on the composition, microstructure, residual stress, mechanical property and tribological behavior of the as-deposited DLC coatings were studied systemically by using EDS, XPS, TEM, stress-tester, nanoindentation and ball-on-plate tribometer as a function of the Ar fraction. The thermal stability of the coatings was also researched by a vacuum heat treatment with various temperatures. The results show that the carbide former Cr preferred to form hard carbide components which were conducive to the hardness of the coatings, while the weak carbide former Al dissolved in the DLC matrix as metallic state, which can effectively released the stress of the DLC coatings. The doped Si would bond with sp2-C to form sp3 CSi, and thus maintained the sp3-C structure stability and improved the thermal stability of the coatings. Accordingly, the DLC coatings with AlCrSi multi-doping not only exhibited relatively low residual stress and high hardness, but also showed a high thermal stability over 500 °C. It was believed that the AlCrSi multi-doping may be a good way for improving the comprehensive properties of the DLC coatings.  相似文献   

4.
Hydrogenated amorphous carbon nitride (a-C:N:H) has been synthesised using a high plasma density electron cyclotron wave resonance (ECWR) technique using N2 and C2H2 as source gases, at different ratios and a fixed ion energy (80 eV). The composition, structure and bonding state of the films were investigated and related to their optical and electrical properties. The nitrogen content in the film rises rapidly until the N2/C2H2 gas ratio reaches 2 and then increases more gradually, while the deposition rate decreases steeply, placing an upper limit for the nitrogen incorporation at 30 at%. For nitrogen contents above 20 at%, the band gap and sp3-bonded carbon fraction decrease from 1.7 to 1.1 eV and ∼65 to 40%, respectively. The transition is due to the formation of polymeric CN, CN and NH groups, not an increase in CH bonds. Films with higher nitrogen content are less dense than the original hydrogenated tetrahedral amorphous carbon (ta-C:H) film but, because they have a relatively high band gap (1.1 eV), high resistivity (109 Ω cm) and moderate sp3-bonded carbon fraction (40%), they should be classed as polymeric in nature.  相似文献   

5.
In the present study structure of silver containing diamond like carbon (DLC:Ag) films deposited by reactive magnetron sputtering was investigated by X-ray diffractometry (XRD) and multiwavelength Raman spectroscopy. In the case of the DLC:Ag films containing low amount of silver, crystalline silver oxide prevails over silver. While at higher Ag atomic concentrations formation of the silver crystallites of the different orientations was observed. Surface enhanced Raman scattering (SERS) effect was detected for high Ag content in the films. For UV excited Raman spectra sp3 bonded carbon related Raman scattering T peak at ~ 1060 cm 1 was detected only for the films with the highest amount of silver (34.3 at.%). The dependence of the Raman scattering spectra parameters such as position of the G peak, G peak full width at half maximum (FWHM(G)), D/G peak area ratio on Ag atomic concentration in DLC:Ag film as well as Raman scattering spectra excitation wavelength were studied. The dependence on Ag amount in film was more pronounced in the case of the Raman scattering spectra excited by higher wavelength laser beam, while in the case of the spectra excited by 325 nm and 442 nm laser beams only weak dependence (or no dependence) was observed. Overall tendency of the decrease of the dispersion of the G peak with the increase of Ag atomic concentration was found. Thus sp3/sp2 bond ratio in DLC:Ag film decreased with the increase of Ag atomic concentration in the films.  相似文献   

6.
Tetrahedrally bonded amorphous carbon (ta-C) and nitrogen doped (ta-C:N) films were obtained at room temperature in a filtered cathodic vacuum arc (FCVA) system incorporating an off-plane double bend (S-bend) magnetic filter. The influence of the negative bias voltage applied to substrates (from −20 to −350 V) and the nitrogen background pressure (up to 10−3 Torr) on film properties was studied by scanning electron microscopy (SEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and X-ray reflectivity (XRR). The ta-C films showed sp3 fractions between 84% and 88%, and mass densities around 3.2 g/cm3 in the wide range of bias voltage studied. In contrast, the compressive stress showed a maximum value of 11 GPa for bias voltages around −90 V, whereas for lower and higher bias voltages the stress decreased to 6 GPa. As for the ta-C:N films grown at bias voltages below −200 V and with N contents up to 7%, it has been found that the N atoms were preferentially sp3 bonded to the carbon network with a reduction in stress below 8 GPa. Further increase in bias voltage or N content increased the sp2 fraction, leading to a reduction in film density to 2.7 g/cm3.  相似文献   

7.
At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temperature without post-processing, have been observed. A selective self assembly of metal and oxygen ions in a 3-element plasma was observed. XPS distinctly showed presence of ZnO and DLC-mixture in 5, 7 and 10 at.% Zn (in target) films while maintaining high sp3 content. This in turn improved the Young's modulus value of the ZnO nanoclusters embedded in DLC film (~ 220 GPa) compared to bulk ZnO (~ 110 GPa). Films with ZnO detected were observed to exhibit absorption edge at 377 nm monochromatic UV light emissions. This corresponded to a band gap value of about 3.30 eV. The emission with greatest intensity (after normalization) was detected from 10 at.% Zn (in target) film where presence of ZnO nanoclusters (~ 40 nm) in DLC matrix were confirmed by TEM. This showed that well-defined crystalline ZnO nanoclusters contributed to strong PL signal. Strong monochromatic emissions detected hinted that no defect states were present.  相似文献   

8.
With the purpose of applying diamond-like carbon (DLC) thin films as a biocompatible material, we experimented with introducing functional groups such as amino and carboxyl groups to the surface of DLC thin films by plasma surface treatment. From the results, it was found that the contact angle values of the DLC thin films surface were decreased with increasing in the OCO bonded network on the surface. Measurement of the zeta potential when the amounts of the functional groups were varied showed that this successfully varied the zeta potential over the wide range of − 48 mV to + 12 mV. It was found that when carboxyl groups are introduced by O2 plasma modification of the DLC thin films surface, the zeta potential was lower than that of untreated DLC thin films sample. It was also found that amino groups can be introduced to the DLC thin films surface by NH3 plasma treatment, the zeta potential was higher than that of untreated DLC thin films sample. This means that zeta potential of the DLC thin films can also be controlled by controlling these two functional groups. Therefore, we have succeeded in developing a multifunctional DLC thin films that does not use polymers and is suitable as a biocompatible material.  相似文献   

9.
We have deposited unhydrogenated diamond-like carbon (DLC) films on Si substrate by pulsed laser deposition using KrF excimer laser, and investigated the effects of atomic-hydrogen exposure on the structure and chemical bonding of the DLC films by photoelectron spectroscopy (PES) using synchrotron radiation and Raman spectroscopy. The fraction of sp3 bonds at the film surface, as evaluated from C1s spectra, increased at a substrate temperature of 400 °C by atomic-hydrogen exposure, whereas the sp3 fraction decreased at 700 °C with increasing exposure time. It was found that the sp3 fraction was higher at the surfaces than the subsurfaces of the films exposed to atomic hydrogen at both the temperatures. The Raman spectrum of the film exposed to atomic hydrogen at 400 °C showed that the clustering of sp2 carbon atoms progressed inside the film near the surface even at such a low temperature as 400 °C.  相似文献   

10.
Using a versatile atmospheric-pressure helium plasma jet, diamond-like carbon (DLC) films were etched in ambient air. We observed that the DLC films are etched at a nominal rate of around 60 nm/min in the treated area (230 μm in diameter) during a 20-min exposure. The etching rate increased after the initial 10-min exposure. During this period, the flat DLC surface was structurally modified to produce carbon nanostructures with a density of ~ 2.4 × 1011 cm 2. With this increase in surface area, the etching rate increased. After 20 min, the DLC film had a circular pattern etched into it down to the substrate where silicon nanostructures were observed with sizes varying from 10 nm to 1 μm. The initial carbon nanostructure formation is believed to involve selective removal of the sp2-bonded carbon domains. The carbon etching results from the formation of reactive oxygen species in the plasma.  相似文献   

11.
In this paper, diamond like carbon (DLC) films were coated on polyethylene terephthalate (PET) film substrate as a function of biasing voltage using plasma enhanced chemical vapour deposition. The surface morphology of the DLC films was analyzed by scanning electron microscopy and atomic force microscopy. The chemical state and structure of the films were analyzed by X-ray photoelectrons spectroscopy and Raman spectroscopy. The micro hardness of the DLC films was also studied. The surface energy of interfacial tension between the DLC and blood protein was investigated using contact angle measurements. In addition, the blood compatibility of the films was examined by in vitro tests. For a higher fraction of sp3 content, maximum hardness and surface smoothness of the DLC films were obtained at an optimized biasing potential of ? 300 V. The in vitro results showed that the blood compatibility of the DLC coated PET film surfaces got enhanced significantly.  相似文献   

12.
Effects of an ultrathin (~ 1 nm) diamond-like carbon (DLC) layer in single-layer organic light-emitting devices (OLEDs) that consist of ITO/(TPD-Alq3 doped PVK)/Al were investigated. DLC layers deposited by using Nd:YAG laser at laser wavelengths of 355 nm were high in sp3 content and resistivity (DLCUV) while that of 1064 nm laser were lower in sp3 content and resistivity (DLCIR), as characterized by Raman spectroscopy and resistivity measurements. Although emission were obtained for all the devices, only the device of ITO/DLCUV/(TPD-Alq3 doped PVK)/Al exhibited enhanced current density and brightness with lower turn-on voltage as compared to a standard device. Devices of ITO/DLCIR/(TPD-Alq3 doped PVK)/Al and ITO/(TPD-Alq3 doped PVK)/DLCUV/Al showed poor current and brightness characteristics but failed at higher applied voltage. The enhance performance of device with high resistivity/sp3 DLC film suggests the mechanisms of barrier reduction by sufficiently thin insulating layer which increase the probability of tunneling of carriers at ITO and PVK interface.  相似文献   

13.
Bonding evolution of amorphous carbon incorporated with Si or a-C(Si) in a thermal process has not been studied. Unhydrogenated a-C(Si) films were deposited by magnetron sputtering to undergo two different thermal processes: i) sputter deposition at substrate temperatures from 100 to 500 °C; ii) room temperature deposition followed by annealing at 200 to 1000 °C. The hardness of the films deposited at high temperature exhibits a monotonic decrease whereas the films deposited at room temperature maintained their hardness until 600 °C. X-ray photoelectron spectroscopy and Raman spectroscopy were used to analyze the composition and bonding structures. It was established that the change in the mechanical property is closely related to the atomic bonding structures, their relative fractions and the evolution (conversion from C–C sp3  CC sp2 or CC sp2  C–Si sp3) as well as clustering of sp2 structures.  相似文献   

14.
A comparative study of the tribological properties of a library of different carbon forms is presented. The library includes hydrogen free and hydrogenated carbon films with different bonding (CC, CH, different sp3 fractions) and structure configurations (amorphous, graphitic) leading to a wide range of densities and hardness. Reference samples (Si substrates, thermally evaporated amorphous carbon, graphitic foil) were studied as well. The tribological properties were measured using a reciprocal sliding tribometer under humid (50% RH) and dry (5% RH) air conditions. Friction coefficients were measured versus the number of sliding cycles and the wear was studied using optical profilometry and imaging as well as SEM.The friction and wear performance of the carbon films were found to depend on both the structure and the ambient conditions. Hydrogen free films have friction coefficients < 0.1 for 80% sp3 bonded films and > 0.1 for 100% sp2 bonded films. The wear resistance of the hydrogen free films (much larger for sp3 bonded films) significantly decreases under dry conditions. In contrast, hydrogenated films show reduction in friction with decreasing humidity (from 0.2 under 50% RH to < 0.1 under 5% RH). The wear resistance of hydrogenated films is larger for dry and smaller for humid conditions.  相似文献   

15.
A technique to coat hydrogen-free diamond-like carbon (DLC) films on polytetrafluoroethylene (PTFE) substrates has been developed by sputtering of a negatively biased graphite target in a mixture of argon and nitrogen plasma. The coated films were characterized by various methods to investigate their chemical, electronic features, and particularly their biomedical properties. DLC films produced by this method have up to 20% sp3 carbon bonds depending on the nitrogen concentration in the plasma. Raman spectroscopy revealed that, bond-disorder increases with nitrogen doping. The average grain size of DLC decreases in the nitrogen doped samples by almost 30%. The roughness of the uncoated PTFE substrate surfaces decreased dramatically from 660 nm to 170 nm after DLC coating. However, the nitrogen contents in the plasma have little effects on the roughness, the cluster size, and shapes. Electronic band gap of the samples decreases with adding nitrogen from ~ 2 eV in nitrogen-free samples to ~ 1 eV in nitrogenated samples. Lower adhesion and aggregation of platelets on PTFE surfaces coated with DLC-10% nitrogen and DLC-20% nitrogen have been observed while there is greater adhesion of platelets on DLC-30% nitrogen and DLC-40% nitrogen.  相似文献   

16.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were deposited by pulsed laser deposition (PLD). Nitrogen contents in the films were controlled by varying a ratio in the inflow amount between nitrogen and hydrogen gases. The film doped with a nitrogen content of 7.9 at.% possessed n-type conduction with an electrical conductivity of 18 Ω? 1 cm? 1 at 300 K. X-ray photoemission spectra, which were measured using synchrotron radiation, were decomposed into four component spectra due to sp2, sp3 hybridized carbons, C=N and C–N. A full-width at half-maximum of the sp3 peak was 0.91 eV. This small value is specific to UNCD/a-C:H films. The sp2/(sp3 + sp2) value was enhanced from 32 to 40% with an increase in the nitrogen content from 0 to 7.9 at.%. This increment probably originates from the nitrogen incorporation into an a-C:H matrix and grain boundaries of UNCD crystallites. Since an electrical conductivity of a-C:H does not dramatically enhance for this doping amount according to previous reports, we believe that the electrical conductivity enhancement is predominantly due to the nitrogen incorporation into grain boundaries.  相似文献   

17.
SiBCN ceramic precursor, polyborosilazane, was synthesized through a novel method which used sodium borohydride as boron source. Vinyl silazane with SiCl was converted to vinyl silazane with SiH structure, followed by hydroboration reaction and subsequent high-temperature reaction to form soluble polyborosilazane liquid. The process of precursor-to-ceramic conversion was almost completed before 800 °C and the cross-linked polyborosilazane precursor exhibited higher ceramic yield 75.6% at 1200 °C. The SiBCN ceramic annealed at 1400 °C contained BN, SiN and SiC bonds with smooth and dense surface and still retained principally amorphous structure up to 1600 °C. In addition, the viscosity of the polyborosilazane was 65 mPa.s, which can efficiently prepare ceramic matrix composite by means of precursor infiltration and pyrolysis (PIP). The density of as-obtained ceramic matrix composite (CMC) was 1.82 g/cm3, and the average bending strength, bending modulus and tensile strength were 265.2 MPa, 37.5 GPa and 158.6 MPa, respectively.  相似文献   

18.
Diamond-like carbon (DLC) coatings were successfully deposited on carbon nanotube (CNT) films with CNT densities of 1 × 109/cm2, 3 × 109/cm2, and 7 × 109/cm2 by a radio frequency plasma-enhanced chemical vapor deposition (CVD). The new composite films consisting of CNT/DLC were synthesized to improve the mechanical properties of DLC coatings especially for toughness. To compare those of the CNT/DLC composite films, the deposition of a DLC coating on a silicon oxide substrate was also carried out. A dynamic ultra micro hardness tester and a ball-on-disk type friction tester were used to investigate the mechanical properties of the CNT/DLC composite films. A scanning electron microscopic (SEM) image of the indentation region of the CNT/DLC composite film showed a triangle shape of the indenter, however, chippings of the DLC coating were observed in the indentation region. This result suggests the improvement of the toughness of the CNT/DLC composite films. The elastic modulus and dynamic hardness of the CNT/DLC composite films decreased linearly with the increase of their CNT density. Friction coefficients of all the CNT/DLC composite films were close to that of the DLC coating.  相似文献   

19.
Simultaneous UV-laser irradiation during the deposition of DLC films has been found to significantly influence the growth process and to favourably modify the film properties. The influence of the spectral and energetic parameters of laser radiation was investigated with respect to the optical, structural and mechanical properties of DLC films. Detailed investigations on the mechanism of laser-induced structural transformations in DLC films are presented, as studied by Raman spectroscopy. Further, the characteristic peak for the nanocrystalline diamond phase at 1140 cm−1 was evident for irradiated films. Noteworthy is the increase in film microhardness with increasing energy of the deposited carbon ions with a simultaneous reduction in internal stresses, caused by photolytically induced modification of the film structure by UV-laser radiation. As a result, hard (up to 30 GPa) and thick (up to 3 μm) defect-free DLC films without cracks have been synthesized.  相似文献   

20.
In this work, tetrahedral diamond-like carbon (DLC) films are deposited on Si, Ti/Si and Au/Si substrates by a new plasma deposition technique — filtered arc deposition (FAD). Their electron field emission characteristics and fluorescent displays of the films are tested using a diode structure. It is shown that the substrate can markedly influence the emission behavior of DLC films. An emission current of 0.1 μA is detected at electric field EDLC/Si=5.6 V/μm, EDLC/Au/Si=14.3 V/μm, and EDLC/Ti/Si=5.2 V/μm, respectively. At 14.3 V/μm, an emission current density JDLC/Si=15.2 μA/cm2, JDLC/Au/Si=0.4 μA/cm2, and JDLC/Ti/Si=175 μA/cm2 is achieved, respectively. It is believed that a thin TiC transition layer exists in the interface between the DLC film and Ti/Si substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号