首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
姚绪梁  王峰  王景芳  王晓伟 《控制与决策》2020,35(10):2424-2432
在时变洋流场环境下,洋流矢量增加了时间维度,在时间角度上可进一步利用洋流以节约自主水下机器人(AUV)能量消耗.此外,在该环境中无后效性不再成立,基于经典贪婪策略的路径规划算法不再适用.鉴于此,结合路径参数选择和双层规划算法,提出一种适用于时变洋流场环境的能耗最优路径规划算法.出发时间和AUV推进速度均可以在时间维度上等待有利洋流,且推进速度与其能量消耗直接相关,因此,引入出发时间和推进速度作为路径参数.在此基础上,针对无后效性不成立问题,使用双层规划作为路径规划算法,分析该算法在时变洋流场环境下的适用性.算法将路径规划任务分为路径规划与路径优化两部分,路径规划部分采用蚁群系统算法构建通道,路径优化部分由量子粒子群算法对路径参数进一步优化,在保证全局最优的同时能够解决传统基于栅格的路径规划算法中机器人运动方向受限的问题.最后以Kongsberg/Hydroid REMUS 600s型水下机器人为模型,对所提出的路径规划算法进行仿真验证.  相似文献   

2.
为解决海流预测不精确条件下,现有基于确定性海流路径规划算法鲁棒性差和规划的路径有可能为不可行路径的问题,本文提出一种基于区间优化的水下机器人(AUV)最优时间路径规划算法.该算法采用双层架构,外层用蚁群系统算法(ACS)寻找由起点至终点的候选路径;内层以区间海流为环境模型,计算候选路径航行时间上下限,并分别通过区间序关系和基于可靠性的区间可能度模型将航行时间区间转换为确定性评价函数,并将评价函数值作为候选路径适应度值返回到外层算法.仿真结果表明,相对于确定海流场路径规划方案,提出的方案增强了路径规划器的鲁棒性并解决了结果路径不可行问题.  相似文献   

3.
In this paper, optimal three-dimensional paths are generated offline for waypoint guidance of a miniature Autonomous Underwater Vehicle (AUV). Having the starting point, the destination point, and the position and dimension of the obstacles, the AUV is intended to systematically plan an optimal path toward the target. The path is defined as a set of waypoints to be passed by the vehicle. Four criteria are considered for evaluation of an optimal path; they are “total length of path”, “margin of safety”, “smoothness of the planar motion” and “gradient of diving”. A set of Pareto-optimal solutions is found where each solution represents an optimal feasible path that cannot be outrun by any other path considering all four criteria. Then, a proposed three-dimensional guidance system is used for guidance of the AUV through selected optimal paths. This system is inspired from the Line-of-Sight (LOS) guidance strategy; the idea is to select the desired depth, presumed proportional to the horizontal distance of the AUV and the target. To develop this guidance strategy, the dynamic modeling of this novel miniature AUV is also derived. The simulation results show that this guidance system efficiently guides the AUV through the optimal paths.  相似文献   

4.
Most algorithms in probabilistic sampling-based path planning compute collision-free paths made of straight line segments lying in the configuration space. Due to the randomness of sampling, the paths make detours that need to be optimized. The contribution of this paper is to propose a basic gradient-based algorithm that transforms a polygonal collision-free path into a shorter one. While requiring only collision checking, and not any time-consuming obstacle distance computation nor geometry simplification, we constrain only part of the configuration variables that may cause a collision, and not entire configurations. Thus, parasite motions that are not useful for the problem resolution are reduced without any assumption. Experimental results include navigation and manipulation tasks, eg a manipulator arm-filling boxes and a PR2 robot working in a kitchen environment. Comparisons with a random shortcut optimizer and a partial shortcut have also been studied.  相似文献   

5.
Observability-based path planning of autonomous sampling platforms for flow estimation is a technique by which candidate trajectories are evaluated based on their ability to enhance the observability of underlying flow-field parameters. Until now, observability-based path planning has focused primarily on forward-in-time integration. We present a novel approach that makes use of the background error covariance at the current time to account properly for uncertainty of the underlying flow. The reduced Hessian of an optimal, linear data-assimilation strategy properly accounts for prior knowledge in the linear case and must be full rank to infer the initial state. The reduced Hessian represents an observability Gramian augmented with an inverse prior covariance. We extend this concept to the nonlinear case to yield a new criterion for scoring candidate trajectories: the empirical augmented unobservability index. Solving the differential covariance Riccati equation of the Kalman Filter for deterministic dynamics also properly accounts for prior knowledge in the linear case, but at a later time. The solution to this equation reveals the important distinctions between observability-based, augmented observability-based, and anticipated covariance-based path planning. Path planning based on this unobservability index in the presence of prior information yields the desired behavior in numerical experiments of a guided Lagrangian sensor in a two-vortex flow pertinent to ocean sampling.  相似文献   

6.
改进粒子群在水下机器人路径规划中的应用   总被引:1,自引:0,他引:1  
在海洋环境中水下机器人路径规划具有规划范围广阔、障碍物相对稀疏、海流的影响不可避免的特点。应用粒子群优化(PSO)算法实现水下机器人在复杂海洋环境中的路径规划,并从参数控制策略及拓扑模型方面进行改进,得到收敛精度更好的改进粒子群优化算法。设计了综合路径长度、海流和转向费用的适应度函数,使算法很好地适应海流的变化,很大程度减小了海流对水下机器人能量消耗和控制的不利影响。经仿真实验验证了算法的有效性,并能够很好地满足在复杂海况环境水下机器人路径规划的要求。  相似文献   

7.
This paper presents an approach where differential evolution is applied to underwater glider path planning. The objective of a glider is to reach a target location and gather research data along its path by propelling itself underwater and returning periodically to the surface. The main hypothesis of this work is that gliders operational capabilities will benefit from improved path planning, especially when dealing with opportunistic short-term missions focused on the sampling of dynamic structures. To model a glider trajectory, we evolve a global underwater glider path based on the local kinematic simulation of an underwater glider, considering the daily and hourly sea currents predictions. The global path is represented by control points where the glider is expected to resurface for communication with a satellite and to receive further navigation instructions. Some well known differential evolution instance algorithms are then assessed and compared on 12 test scenarios using the proposed approach. Finally, a real case glider vessel mission was commanded using this approach.  相似文献   

8.
A modified ant optimization algorithm for path planning of UCAV   总被引:2,自引:0,他引:2  
A modified ant algorithms is presented as a fast and efficient approach for path planning of UCAV in this paper. To fleetly and reliably accomplish the air combat task, the path planning plays an extremely important role in the design of UCAV. The planned path can ensure UCAV reach the destination along the optimization path with the minimum probability of being found and the minimum energy consumed cost. Due to the big search space, the original ant algorithm can easily converge to local best solutions, and the search speed is slow. For avoiding these disadvantages, an improved ant algorithm is given and it is used to optimize path of UCAV. The modified ant algorithm can improve the speed of selection course, and decrease the probability of local best solutions. When UCAV meets the unexpected threat during its fly, it needs to revise the aforehand given path with re-planning technology. Based on the modified ant algorithm, a new method of three-dimensional real-time path re-planning is presented for UCAV. The simulation results show that this proposed path-planning scheme can obtain the optimization path which can be re-optimized when the unexpected threats appear.  相似文献   

9.
Notwithstanding the widespread use and large number of advantages over traditional subtractive manufacturing techniques, the application of additive manufacturing technologies is currently limited by the undesirable fabricating efficiency, which has attracted attentions from a wide range of areas, such as fabrication method, material improvement, and algorithm optimization. As a critical step in the process planning of additive manufacturing, path planning plays a significant role in affecting the build time by means of determining the paths for the printing head's movement. So a novel path filling pattern for the deposition of extrusion–based additive manufacturing is developed in this paper, mainly to avoid the retraction during the deposition process, and hence the time moving along these retracting paths can be saved and the discontinuous deposition can be avoided as well. On the basis of analysis and discussion of the reason behind the occurrence of retraction in the deposition process, a path planning strategy called “go and back” is presented to avoid the retraction issue. The “go and back” strategy can be adopted to generate a continuous extruder path for simple areas with the start point being connected to the end point. So a sliced layer can be decomposed into several simple areas and the sub-paths for each area are generated based on the proposed strategy. All of these obtainable sub-paths can be connected into a continuous path with proper selection of the start point. By doing this, separated sub-paths are joined with each other to decrease the number of the startup and shutdown process for the extruder, which is beneficial for the enhancement of the deposition quality and the efficiency. Additionally, some methodologies are proposed to further optimize the generated non-retraction paths. At last, several cases are used to test and verify the developed methodology and the comparisons with conventional path filling patterns are conducted. The results show that the proposed approach can effectively reduce the retraction motions and is especially beneficial for the high efficient additive manufacturing without compromise on the part resistance.  相似文献   

10.
本文讨论了基于案例的学习方法在水下机器人全局路径规划中的应用问题.基于案例的学习方法是一种增量式的学习过程,它根据过去的经验进行学习及问题求解.本文对基于案例的学习方法在规划中的应用框架进行了初步研究,对案例属性的提取,案例的匹配和择优,以及案例库的更新等问题提出了相应的算法.最后给出了几组仿真结果.  相似文献   

11.
A survey on coverage path planning for robotics   总被引:2,自引:0,他引:2  
Coverage Path Planning (CPP) is the task of determining a path that passes over all points of an area or volume of interest while avoiding obstacles. This task is integral to many robotic applications, such as vacuum cleaning robots, painter robots, autonomous underwater vehicles creating image mosaics, demining robots, lawn mowers, automated harvesters, window cleaners and inspection of complex structures, just to name a few. A considerable body of research has addressed the CPP problem. However, no updated surveys on CPP reflecting recent advances in the field have been presented in the past ten years. In this paper, we present a review of the most successful CPP methods, focusing on the achievements made in the past decade. Furthermore, we discuss reported field applications of the described CPP methods. This work aims to become a starting point for researchers who are initiating their endeavors in CPP. Likewise, this work aims to present a comprehensive review of the recent breakthroughs in the field, providing links to the most interesting and successful works.  相似文献   

12.
We propose real-time path planning schemes employing limited information for fully autonomous unmanned air vehicles (UAVs) in a hostile environment. Two main algorithms are proposed under different assumptions on the information used and the threats involved. They consist of several simple (computationally tractable) deterministic rules for real-time applications. The first algorithm uses extremely limited information (only the probabilistic risk in the surrounding area with respect to the UAV's current position) and memory, and the second utilizes more knowledge (the location and strength of threats within the UAV's sensory range) and memory. Both algorithms provably converge to a given target point and produce a series of safe waypoints whose risk is almost less than a given threshold value. In particular, we characterize a class of dynamic threats (so-called, static-dependent threats) so that the second algorithm can efficiently handle such dynamic threats while guaranteeing its convergence to a given target. Challenging scenarios are used to test the proposed algorithms.  相似文献   

13.
The importance of path planning is very significant in the field of robotics. This paper presents the application of multilayer perceptrons to the robot path planning problem, and in particular to the task of maze navigation. Previous published results implied that the training of feedforward multilayered networks failed, because of the non- smoothness of data. Here the path planning problem is reconsidered, and it is shown that multilayer perceptrons are able to learn the task successfully.  相似文献   

14.
In this paper, we establish a new model for path planning with interval data which arises in a variety of applications. It is formulated as minimum risk-sum path problem  : given a source-destination pair in a network G=(V,E)G=(V,E), traveling on each link e in G   may take time xexe in a prespecified interval [le,ue][le,ue] and take risk (ue-xe)/(ue-le)(ue-xe)/(ue-le), the goal is to find a path in G from the source to the destination, together with an allocation of travel times along each link on the path, so that the total travel time of links on the path is no more than a given time bound and the risk-sum over the links on the path is minimized. Our study shows that this new model has two features that make it different from the existing models. First, the minimum risk-sum path problem is polynomial-time solvable, and second, it provides many solutions that vary with time bounds and risk sums and leaves the choice for decision makers. Therefore, the new model is more flexible and easier to use for the path planning with interval data.  相似文献   

15.
A path planning algorithm for industrial robots   总被引:1,自引:0,他引:1  
Instead of using the tedious process of robot teaching, an off-line path planning algorithm has been developed for industrial robots to improve their accuracy and efficiency. Collision avoidance is the primary concept to achieve such goal. By use of the distance maps, the inspection of obstacle collision is completed and transformed to the configuration space in terms of the robot joint angles. On this configuration map, the relation between the obstacles and the robot arms is obvious. By checking the interference conditions, the collision points are indicated with marks and collected into the database. The path planning is obtained based on the assigned marked number of the passable region via wave expansion method. Depth-first search method is another approach to obtain minimum sequences to pass through. The proposed algorithm is experimented on a 6-DOF industrial robot. From the simulation results, not only the algorithm can achieve the goal of collision avoidance, but also save the manipulation steps.  相似文献   

16.
17.
Hybrid ant colony algorithms for path planning in sparse graphs   总被引:2,自引:1,他引:1  
The general problem of path planning can be modeled as a traveling salesman problem which assumes that a graph is fully connected. Such a scenario of full connectivity is however not always realistic. One such motivating example for us is the application of path planning for unmanned reconnaissance aerial vehicles (URAVs). URAVs are widely deployed for photography or imagery gathering missions of sites of interest. These sites can be targets in a combat zone to be investigated or sites inaccessible by ground transportation, such as those hit by forest fires, earthquake or other forms of natural disasters. The navigation environment is one where the overall configuration of the problem is a sparse graph. Unlike graphs that are fully connected, sparse graphs are not always Hamiltonian. In this paper, we describe hybrid ant colony algorithms (HACAs) proposed for path planning in sparse graphs since existing ant colony solvers designed for solving TSP do not apply to the present context directly. HACAs represent ant inspired algorithms incorporated with a local search procedure and some heuristic techniques for uncovering feasible route(s) or path(s) in a sparse graph within tractable time. Empirical results conducted on a set of generated sparse graphs demonstrate the excellent convergence property and robustness of HACAs in uncovering low risk and Hamiltonian visitation paths. Further, the obtained results also indicate that HACAs converge to secondary closed paths in situations where a Hamiltonian cycle does not exist theoretically or is not attainable within the bounded computational time window.  相似文献   

18.
基于移动机器人路径规划的鼠群算法   总被引:4,自引:0,他引:4  
研究静态环境下机器人路径规划问题,并根据老鼠觅食行为提出一种鼠群算法.该算法引入环境因子和经验因子,每次搜索后对路径进行经验因子更新,通过迭代的方式寻找静态环境下机器人最佳路径.同时提出一种禁忌策略,有效地避免了路径死锁问题.理论分析和实验结果表明,该算法能使机器人在有较多障碍的环境下迅速找到一条优化路径,而且安全避碰,与同类算法相比具有一定的优越性.  相似文献   

19.
快速搜索随机树(Rapidly-exploring random Tree Star,RRT*)算法在移动机器人实际应用中规划路径在转向部分存在较多的冗余转折点,导致移动机器人在移动转向过程中出现多次停顿与转向,为剔除规划路径中的冗余路径点,提高机器人移动流畅性,提出一种改进的 RRT*算法。算法将局部逆序试连法引入移动机器人路径规划,在确保RRT*算法概率完备性和渐进最优性的前提下,剔除规划路径中的冗余路径节点,使最终路径更加接近最短路径。通过MATLAB仿真实验证明,规划路径平均长度缩短4%,算法耗时缩短35%,改进后的RRT*算法能缩短规划路径且转向部分路径更加平滑。最后,使用改进后的RRT*算法在室内环境下进行移动机器人路径规划实验。实验结果表明:规划路径上无冗余路径点,且移动机器人沿路径移动流畅。  相似文献   

20.
This paper addresses a three-dimensional (3D) path following control problem for underactuated autonomous underwater vehicle (AUV) subject to both internal and external uncertainties. A two-layered framework synthesizing the 3D guidance law and heuristic fuzzy control is proposed to achieve robust adaptive following along a predefined path. In the first layer, a 3D guidance controller for underactuated AUV is presented to guarantee the stability of path following in the kinematics stage. In the second layer, a heuristic adaptive fuzzy algorithm based on the guidance command and feedback linearization Proportional-Integral-Derivative (PID) controller is developed in the dynamics stage to account for the nonlinear dynamics and system uncertainties, including inaccuracy modelling parameters and time-varying environmental disturbances. Furthermore, the sensitivity analysis of the heuristic fuzzy controller is presented. Against most existing methods for 3D path following, the proposed robust fuzzy control scheme reduces the design and implementation costs of complicated dynamics controller, and relaxes the knowledge of the accuracy dynamics modelling and environmental disturbances. Finally, numerical simulation results validate the effectiveness of the proposed control framework and illustrate the outperformance of the proposed controller as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号