首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RE3+ (RE3+ = Tm3+, Dy3+) ion single and co-doped tungsten borate glasses for white light emitting diodes (LEDs) were prepared by melt quenching method. Emission and excitation spectra of the glasses were measured. The color of luminescence can be tuned by changing the composition of glass matrix or the concentrations of Tm3+ and Dy3+ ions. White light emission can be achieved from 0.5Dy3+ single-doped 15WO3–25La2O3–60B2O3 and 0.4Tm3+/1.5Dy3+ co-doped 50WO3–25La2O3–25B2O3 glasses. In addition, energy transfers between Tm3+ and Dy3+ were also analyzed. The Dy3+/Tm3+ co-doped tungsten borate glasses may be potential candidates for white LED application.  相似文献   

2.
Dy3+-doped and Dy3+:Yb3+-codoped oxyfluoride glass ceramics have been prepared by high-temperature solid phase sintering method. The micrographs of scanning electron microscope show that a lot of nanorods are formed on the surface of Dy3+:Yb3+-codoped sample. The excitation spectra and emission spectra are measured, respectively, and intense photoluminescence peaks at 482 and 575 nm corresponding to the transitions of Dy3+ ions are found in single-doped samples under 388-nm excitation. For Dy3+:Yb3+-codoped oxyfluoride glass ceramics, the intensities at blue and green bands become weaker whereas the intensity at 695 nm gets stronger. The indirect sensitization is detailedly discussed and Commission Internationale de l′E-clairage chromaticity coordinates exhibit that two kinds of oxyfluoride glass ceramics are available candidates for the solid-state white light emission.  相似文献   

3.
A spectroscopic investigation of sodium germanate glasses activated with Ce3+, Tb3+ and Ce3+/Tb3+ is carried out by analyzing their photoluminescence spectra and decay times. Non-radiative energy transfer from Ce3+ to Tb3+ is observed upon near-UV excitation at 310 nm (peak emission wavelength of AlGaN-based LEDs). The non-radiative nature of this energy transfer is inferred from the increase in the decay rate of the Ce3+ emission when the glass is co-doped with Tb3+. From an analysis of the Ce3+ emission decay time curve it is inferred that an electric dipole–quadrupole interaction might to be the dominant mechanism for the Tb3+ emission sensitized by Ce3+. Energy transfer from Ce3+ to Tb3+ leads to a simultaneous emission of these ions in the blue, green, yellow and red, resulting in white light with CIE1931 chromaticity coordinates, x = 0.30 and y = 0.32, which correspond to cold white light with a colour temperature of 7320 K and very small deviation from the Planckian black-body radiator locus (0.005).  相似文献   

4.
Dy3+/Tm3+ co-doped oxyfluoride glass ceramics containing hexagonal β-NaGdF4 nanocrystals were prepared by the melt-quenching method and subsequent heat-treatment procedure. During the crystallization process, the structural evolution of glass network was systematically investigated using XRD, TEM and FTIR spectra. Experimental results provided new evidences that a silica-enriched layer around the precipitated fluoride nanocrystals was formed during the crystallization process. Strong white light emission was obtained in the oxyfluoride glass ceramics by modifying the relative concentration ratio of Tm3+ and Dy3+ ions.  相似文献   

5.
12CaO 7Al2O3:Dy3+ nanopowders were successfully synthesized by the chemical co-precipitation method. X-ray diffraction result shows that the single 12CaO 7Al2O3 phase is formed with Dy3+ ions to replace the Ca2+ ions in the host of 12CaO 7Al2O3. The yellow and blue emissions, attributed to the forced electric dipole transition of 4F(9/2) --> 6H(13/2) centered at 571 nm and the magnetic dipole transition of 4F(9/2) --> 6H(15/2) centered at 480 nm, respectively, were observed. The integrated intensity ratios of yellow to blue increase from 1.63 to 1.70 with Dy3+ concentration increasing from 0.8 to 2.0% for the as-prepared 12CaO 7Al2O3:xDy3+ phosphor. The significantly enhanced emission intensities of 12CaO 7Al2O3:1.0% Dy3+ phosphor annealed at 900 degrees C for 2 hours in vacuum ambient could be ascribed to the decrease of OH(-) groups and the change of the surface topography. The thermal stability and the Commission International de l'Eclairage coordinates were also investigated. All the photoluminescence characteristics indicate that Dy3+ ions doped 12CaO 7Al2O3 may be a good candidate for the solid state lighting phosphor as well as white light-emitting diodes.  相似文献   

6.
White light emission from silicon oxycarbide-based metal-oxide-semiconductor diode has been realized in this work. Emitted light is visible to the naked eyes as the bias voltage is increased higher than 15 V. Electroluminescence intensity increases linearly with current density. According to the analysis of conduction mechanisms in device, electron-hole radiative recombination at twofold coordinated silicon lone-pair centers, neutral oxygen vacancies, and Eδ′ defect centers in film is responsible for the light emission.  相似文献   

7.
8.
Fluorophosphate glass triply doped with Ho3+/Tm3+/Pr3+ has been synthesized. 2.86, 2 and 1.47 μm emissions have been successfully obtained from the present glass pumped by conventional 800 nm LD. The corresponding energy transfer mechanisms and microparameters are discussed and analyzed according to the photoluminescence performance and absorption measurements. Tm3+ ions can absorb the pumping energy and transfer it to Ho3+ and Pr3+ ions. Large energy transfer coefficient from Ho3+ to Pr3+ ions (8.22 × 10?39 cm6/s) has been obtained based on the Förster-Dexter theory. The results suggest Ho3+/Tm3+/Pr3+ triply doped fluorophosphate glass is a promising candidate for efficient mid-infrared laser.  相似文献   

9.
Er3+, Tm3+ and Yb3+ codoped gadolinium oxyfluoride nanoparticles were prepared in aqueous solution by a simple coprecipitation method, under alkaline conditions. After a suitable heat treatment at 500 °C, the nanocrystalline powders were found to be single phase tetragonal Gd4O3F6 after a structural characterization using X-ray powder diffraction. Transmission electron microscopy images showed that the average size of the nanoparticles was approximately 50 nm. Following appropriate lanthanide ion doping, the nanocrystals show bright white light upconversion upon excitation at 980 nm using a diode laser as the excitation source.  相似文献   

10.
Photoluminescence (PL) properties of silver (Ag) and dysprosium (Dy) codoped zeolites were investigated. It was found that PL from the 4F9/26H13/2 transition of Dy3+ ions at 575 nm is more than 50 times enhanced by the presence of Ag+ ions under ultraviolet excitation. The excitation wavelength dependence of the PL intensity coincided well with the absorption spectra of Ag+ ions, indicating that Dy3+ ions are excited by the energy transfer from Ag+ ions. In addition, by carefully optimizing annealing condition and Dy and Ag concentration, white light was realized due to the combination of blue emission of Ag+ ions, yellow emission of Dy3+ ions and red emission of Ag clusters.  相似文献   

11.
12.
Tm3+ doped Ga–As–S chalcogenide glass samples were produced using As2S3 pure glass as starting materials. Their photoluminescence properties were characterized and strong emission bands were observed at 1.2 μm (1H5  3H6), 1.4 μm (3H4  3F4) and 1.8 μm (3F4  3H6) under excitation wavelengths of 698 nm and 800 nm. The thulium and gallium concentrations were optimized to achieve the highest photoluminescence efficiency. From the optimal composition, a Tm3+ doped Ga–As–S fiber was drawn and its optical properties were studied.  相似文献   

13.
Yb3+-doped langbeinite salts were prepared by the solid solution method. X-ray diffraction patterns and vibrational spectroscopy confirmed that all obtained phases are highly pure, iso-structural and they crystallize in the cubic system with the space group P213. The emission luminescence comes from the 2F5/2  2F7/2 transition of Yb3+ ions. Moreover, intense blue cooperative emission was observed at 476 nm under excitation in the near infrared at 975 nm.  相似文献   

14.
Polycrystalline sub-micron-sized GdAl3(BO3)4 phosphors co-doped with Eu3+, Tb3+, Dy3+ and Tm3+ have been prepared by combustion synthesis with urea. The phosphors have been characterised by X-ray diffraction, scanning electron microscopy, excitation and emission spectroscopy. The chromaticity co-ordinates and the colour temperatures of the fluorescence of the materials presented have been calculated and analysed with Commission Internationale l’Eclairage (CIE) programs and diagrams. Depending on the excitation wavelength, different colour temperatures of the light emitted can be achieved. Due to its polyspectral nature, the emitted light reveals a high colour rendering index.  相似文献   

15.
《Optical Materials》2014,36(12):2115-2121
A conjugated oligothiophene chromophore with large linear and nonlinear absorption cross-sections that emits light in the blue region is studied. Here measurements of the one- and two-photon absorption and fluorescence of an oligothiophene chromophore doped in polymethyl-methacrylate (PMMA) polymer is presented. It was observed that oligothiophene/PMMA fluoresces strongly and through amplified spontaneous emission (ASE), is an efficient source of blue light around 460 nm. Using these materials, a polymer fiber-based blue ASE light source is demonstrated. Blue emitting molecules (mainly in PMMA) are tabulated for comparison.  相似文献   

16.
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2–GeO2–Bi2O3–K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards.  相似文献   

17.
杨斌  王倩  张约品  夏海平 《功能材料》2015,(6):6091-6094,6101
用高温熔融法制备了Dy3+/Tb3+掺杂的高钆镥氟氧化物闪烁玻璃样品,测试分析了其吸收光谱、激发与发射光谱及衰减曲线等。研究了Dy3+和Tb3+离子浓度增加对Tb3+离子发光的影响以及Dy3+离子的浓度猝灭效应;通过IH理论模型分析了Dy3+和Tb3+离子的能量传递方式和能量传递效率。结果表明Dy3+离子对Tb3+离子发光具有敏化作用,随着Dy3+离子浓度增加敏化作用增强,但是当Dy3+离子的浓度达到2%(摩尔分数)以上时,随着Dy3+离子浓度的增加,Tb3+离子的发光强度降低;Dy3+和Tb3+离子的能量传递方式为无辐射能量传递方式,且能量传递效率可以达到60%以上。  相似文献   

18.
《Optical Materials》2014,36(12):2502-2506
Vitreous materials containing rare-earth (RE) ions and metallic nanoparticles (NPs) attract considerable interest because the presence of the NPs may lead to an intensification of luminescence. In this work, the characteristics of 1.54 μm luminescence for the Er3+ ions doped bismuthate glasses containing Ag NPs were studied under 980 nm excitation. The surface plasmon resonance (SPR) band of Ag NPs appears from 500 to 1500 nm. Transmission electron microscopic (TEM) image reveals that the Ag NPs are dispersed homogeneously with the size from 2 to 7 nm. The strength parameters Ωt(t = 2, 4, 6), spontaneous emission probability (A), radiative lifetime (τ) and stimulated emission section (σem) of Er3+ ions were calculated by the Judd–Ofelt theory. When the glass contains 0.2 wt% AgCl, the 1.54 μm fluorescence intensity of Er3+ reaches a maximum value, which is 7.2 times higher than that of glass without Ag NPs. The Ag NPs embedded glasses show significantly fluorescence enhancement of Er3+ ions by local field enhancement from SPR.  相似文献   

19.
Tm3+ /Dy3+ co-doped LiYF4 single crystals were synthesized by using vertical Bridgman method in sealed Pt crucibles. When excited by a proper UV-light, the crystals show blue emission band centered at 485 nm, which overlaps between the transition of Tm3+ (1G4 → 3H6) and Dy3+ (4F9/2 → 6H15/2) ions, and yellow band of 573 nm ascribed to Dy3+ (4F9/2 → 6H13/2) ions. Both chromaticity coordinates and photoluminescence intensity vary with the excitation wavelengths and the concentration of rare earth dopants. A white light can be achieved from Tm3+ (0.6 mol%), Dy3+ (2.25 mol%) co-doped LiYF4 crystal with chromaticity coordinates of x ≈ 0.2836, y ≈ 0.3229, and color temperature T c = 8419 K by the excitation of a 350 nm light. It indicates that this crystal can be a potential candidate for the UV-light excited white-light emitting diodes.  相似文献   

20.
In this paper, down-conversion of Tm3+ doped fluoride ZLAG glasses with composition of 70.2ZrF4–(23.4−x)LaF3–0.6AlF3–5.8GaF3–xTmF3 (x = 0.25, 0.5, 0.75, 1, 2, 3 and 5 mol%) were tested as encapsulation materials for solar cells. The current density – voltage (J-V) characterizations were performed under solar simulator irradiation. The influence of Tm3+ concentration on the mono crystalline silicon solar cells performances was investigated. A slight increase of the solar cell efficiency was observed in the case of fluoride ZLAG for Tm3+ doping concentrations up to 1 mol% Tm3+. Further increase of the Tm3+ concentration leads to a decrease of solar cell conversion efficiency as a result of concentration quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号